|

Using Excess Functions to Simulate Vapour Pressure in Binary Non-Electrolyte Solutions

Authors: Mitrofanov M.S., Ananyeva E.A., Sergievskii V.V. Published: 10.08.2022
Published in issue: #4(103)/2022  
DOI: 10.18698/1812-3368-2022-4-125-139

 
Category: Chemistry | Chapter: Physical Chemistry  
Keywords: cluster model, vapour-liquid equilibrium, molecular association, alcohols, hydrogen bond

Abstract

The paper considers simulating thermodynamic properties of completely miscible binary non-electrolyte solutions characterised by a positive deviation from ideality due to association concerning one of the solution components in general. We used a cluster-based mathematical model. The paper provides a cluster model equation to describe concentration dependences of vapor pressure over the solution as functions of the liquid phase composition. The model equation parameters are the expected value of associate distribution in the standard state and the variance of associates. We present a formalised method for simulating vapor pressure using concentration dependences of excess molar characteristics of the mixture as functions of the liquid phase composition. We derived concentration dependences of vapour pressure for binary solutions of alcohols in haloalkanes directly from the experimental data and analytically from the excess molar enthalpy and excess molar volume. These results, though derived by different methods, agree well with each other and appropriately describe vapor pressure concentration dependences as functions of the liquid phase composition. We demonstrate that varying cluster model equation parameters in a temperature range will successfully match patterns of association found in systems prone to hydrogen bond formation

Please cite this article in English as:

Mitrofanov M.S., Ananyeva E.A., Sergievskii V.V. Using excess functions to simulate vapour pressure in binary non-electrolyte solutions. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2022, no. 4 (103), pp. 125--139 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2022-4-125-139

References

[1] Walas S.M. Phase equilibria in chemical engineering. Butterworth, 1985.

[2] Rudakov A.M., Skorobogatko D.S., Sergievskiy V.V. Molecular association in binary mixtures of alcohol --- aliphatic hydrocarbon according to liquid-vapor equilibrium data. Inzhenernaya fizika [Engineering Physics], 2007, no. 2, pp. 32--35 (in Russ.).

[3] Rudakov A.M., Sergievskii V.V. Opisanie termodinamicheskikh svoystv rastvorov na osnove klasternoy modeli samoorganizatsii. V kn.: Strukturnaya samoorganizatsiya v rastvorakh i na granitse razdela faz [Description of solutions thermodynamic properties based on the cluster model of self-organization. In: Structural Self-Organization in Solutions and at the Interphase]. Moscow, URSS Publ., 2008, pp. 341--411 (in Russ.).

[4] Rudakov A.M., Skorobogatko D.S., Sergievskii V.V., et al. Modeling thermodynamic properties of binary mixtures of alkanolamines with water. Khimicheskaya tekhnologiya [Chemical Technology], 2011, vol. 12, no. 7, pp. 444--447 (in Russ.).

[5] Rudakov A.M., Glagoleva M.A., Lipanova N.V., et al. Molecular association in binary mixes of aliphatic ethers and n-alcohols. Modern Problems of Science and Education, 2012, no. 6 (in Russ.). Available at: https://science-education.ru/ru/article/view?id=7965

[6] Rudakov A.M., Skorobogatko D.S., Sergievskii V.V. Modeling of equilibria vapour-liquid for binary mixes of alcohol-organic solvent. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphases], 2007, vol. 9, no. 2, pp. 147--151 (in Russ.).

[7] Mitrofanov M.S., Sergievskii V.V. Vapor-liquid equilibria modeling by the cluster model equation. Uspekhi v khimii i khimicheskoy tekhnologii, 2017, vol. 31, no. 4, pp. 7--10 (in Russ.).

[8] Rudakov A.M., Mitrofanov M.S., Sergievskii V.V. Estimation of association constants in binary mixtures of non-electrolytes by vapor-liquid equilibria data--par. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphases], 2012, vol. 14, no. 2, pp. 233--238 (in Russ.).

[9] Rudakov A.M., Mitrofanov M.S., Sergievskii V.V. Vapor pressure modelling by results description excess enthalpy of five binary systems with associated components. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphases], 2012, vol. 14, no. 3, pp. 377--383 (in Russ.).

[10] Martinez S., Garriga R., Perez P., et al. Isothermal vapor-liquid equilibrium of 1-chlorobutane with ethanol or 1-hexanol at ten temperatures between 278.15 K and 323.15 K. J. Chem. Eng. Data, 2001, vol. 46, iss. 3, pp. 535--540. DOI: https://doi.org/10.1021/je0000874

[11] Garriga R., Martinez S., Perez P., et al. Vapor pressures at several temperatures between 278.15 and 323.15 K and excess functions at T = 298.15 K for 1-bromobutane with 1-butanol or 2-methyl-2-propanol. J. Chem. Eng. Data, 2002, vol. 47, iss. 2, pp. 322--328. DOI: https://doi.org/10.1021/je0101754

[12] Garriga R., Martinez S., Perez P., et al. Thermodynamic excess properties for binary mixtures of 1-chlorobutane with 2-butanol or 2-methyl-1-propanol. Fluid Phase Equilib., 2001, vol. 181, iss. 1-2, pp. 203--214. DOI: https://doi.org/10.1016/S0378-3812(01)00499-X

[13] Garriga R., Martinez S., Perez P., et al. Isothermal (vapour + liquid) equilibrium at several temperatures of (1-chlorobutane+1-butanol, or 2-methyl-2-propanol). J. Chem. Thermodyn., 2001, vol. 33, iss. 5, pp. 523--534. DOI: https://doi.org/10.1006/jcht.2000.0766

[14] Chen H.-W., Wen C.-C., Tu C.-H. Excess molar volumes, viscosities, and refractive indexes for binary mixtures of 1-chlorobutane with four alcohols at T = (288.15, 298.15, and 308.15) K. J. Chem. Eng. Data, 2004, vol. 49, iss. 2, pp. 347--351. DOI: https://doi.org/10.1021/je030226s

[15] Anson A., Garriga R., Martinez S., et al. Densities and viscosities of binary mixtures of 1-chlorobutane with butanol isomers at several temperatures. J. Chem. Eng. Data, 2005, vol. 50, iss. 2, pp. 677--682. DOI: https://doi.org/10.1021/je0496140

[16] Chipiga A.F., Kolkov D.A. Analysis of random search methods for global extremums of multidimensional functions. Fundamentalnye issledovaniya [Fundamental Research], 2006, no. 2, pp. 24--26 (in Russ.).