|

Vapor-Liquid Equilibrium Study in the Alcohol Binary Solutions using the Cluster Model

Authors: Mitrofanov M.S., Ananyeva E.A., Sergievskii V.V. Published: 11.03.2023
Published in issue: #1(106)/2023  
DOI: 10.18698/1812-3368-2023-1-161-172

 
Category: Chemistry | Chapter: Physical Chemistry  
Keywords: cluster model, liquid-vapor equilibrium, molecular association, alcohols, hydrogen bond

Abstract

The vapor-liquid equilibrium was analyzed for infinitely miscible binary solutions of alcohols exhibiting positive deviations from the Raoult’s law on the basis of the cluster model. The considered substances were by-products of the Fischer --- Tropsch process and various additives to the biofuel. Cluster model equation was provided to describe concentration dependences of vapor pressure over the solution on composition of the liquid phase. The model applicability included non-electrolyte solutions, which deviation from ideality was caused by preferential association of one of the solution components. The model equations parameters were the mathematical expectations of the associates’ distribution in standard state and dispersion of the association number. It is shown that the model equations adequately describe experimental data on vapor pressure for mixtures of various aliphatic alcohols with diethyl carbonate and ketones. For mixtures of hydrocarbons with pentanol isomers, the previously formalized method for simulating vapor pressure along concentration dependences of the mixture excess molar characteristics on the liquid phase composition was applied. It was established that solutions obtained by various methods are in good agreement with each other and adequately describe concentration dependences of the vapor pressure on composition of the liquid phase

Please cite this article in English as:

Mitrofanov M.S., Ananyeva E.A., Sergievskii V.V. Vapor-liquid equilibrium study in the alcohol binary solutions using the cluster model. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2023, no. 1 (106), pp. 161--172 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2023-1-161-172

References

[1] Rudakov A.M., Skorobogatko D.S., Sergievskiy V.V. Molecular association in binary mixtures of alcohol-aliphatic hydrocarbon according to liquid-vapor equilibrium data. Inzhenernaya fizika, 2007, no. 2, pp. 32--35 (in Russ.).

[2] Rudakov A.M., Sergievskiy V.V. Opisanie termodinamicheskikh svoystv rastvorov na osnove klasternoy modeli samoorganizatsii. V kn.: Strukturnaya samoorganizatsiya v rastvorakh i na granitse razdela faz [Description of solutions thermodynamic properties based on the cluster self-organization model. In: Structural self-organization in solutions and at the interphase]. Moscow, URSS Publ., 2008, pp. 341--411 (in Russ.).

[3] Rudakov A.M., Skorobogatko D.S., Sergievskiy V.V., et al. Modeling of thermo-dynamic properties of alkanolamines binary mixtures with water. Khimicheskaya tekhnologiya, 2011, vol. 12, no. 7, pp. 444--447 (in Russ.).

[4] Rudakov A.M., Glagoleva M.A., Lipanova N.V., et al. Molecular association in binary mixes of aliphatic ethers and 1-alcohols. Sovremennye problemy nauki i obrazovaniya [Modern Problems of Science and Education], 2012, no. 6, art. 723 (in Russ.). Available at: https://science-education.ru/ru/article/view?id=7965

[5] Rudakov A.M., Skorobogatko D.S., Sergievskiy V.V. Modeling of equilibria vapour-liquid for binary mixes of alcohol-organic solvent. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphases], 2007, vol. 9, no. 2, pp. 147--151 (in Russ.).

[6] Rudakov A.M., Sergievskiy V.V., Mitrofanov M.S. Estimation of association constants in binary mixtures of non-electrolytes by vapor-liquid equilibria data. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Inter-phases], 2012, vol. 14, no. 2, pp. 233--238 (in Russ.).

[7] Mitrofanov M.S., Sergievskiy V.V. Vapor-liquid equilibria modeling by the cluster model equation. Uspekhi v khimii i khimicheskoy tekhnologii, 2017, vol. 31, no. 4, pp. 7--10 (in Russ.).

[8] Rudakov A.M., Mitrofanov M.S., Sergievskiy V.V. Vapor pressure modelling by results description excess enthalpy of five binary systems with associated components. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphases], 2012, vol. 14, no. 3, pp. 377--383 (in Russ.).

[9] Bentley R.W. Global oil & gas depletion: an overview. Energy Policy, 2002, vol. 30, iss. 3, pp. 189--205. DOI: https://doi.org/10.1016/S0301-4215(01)00144-6

[10] Wiguno A., Tetrisyanda R., Wibawa G. Vapor pressure of 2-butanol + diethyl carbonate and tert-butanol + diethyl carbonate at the temperature of 303.15--323.15 K. J. Chem. Eng. Data, 2020, vol. 65, no. 5, pp. 2441--2445. DOI: https://doi.org/10.1021/acs.jced.9b01079

[11] Anugraha R.P., Wiguno A., Altway A., et al. Vapor pressures of diethyl carbonate + ethanol binary mixture and diethyl carbonate + ethanol + isooctane/toluene ternary mixtures at temperatures range of 303.15--323.15 K. J. Mol. Liq., 2018, vol. 264, pp. 32--37. DOI: https://doi.org/10.1016/j.molliq.2018.05.049

[12] Moreau A., Segovia J.J., Bermejo M.D., et al. Vapor-liquid equilibria and excess enthalpies of the binary systems 1-pentanol or 2-pentanol and 1-hexene or 1,2,4-trimethyl-benzene for the development of biofuels. Fluid Phase Equilib., 2018, vol. 460, pp. 85--94. DOI: https://doi.org/10.1016/j.fluid.2017.12.031

[13] Avoseh F., Iwarere S.A., Narasigadu C., et al. Vapor-liquid equilibrium for methyl isobutyl ketone (MIBK) + (1-propanol or 2-propanol) binary mixtures. J. Chem. Eng. Data, 2017, vol. 62, no. 7, pp. 2014--2020. DOI: https://doi.org/10.1021/acs.jced.7b00026

[14] Moodley K., Dorsamy C.L. Isothermal vapor-liquid equilibrium measurements of butan-2-one+ 2-methyl-propan-1-ol/pentan-1-ol. J. Chem. Eng. Data, 2018, vol. 63, no. 11, pp. 4128--4135. DOI: https://doi.org/10.1021/acs.jced.8b00552

[15] Mavalal S., Chetty T., Moodley K. Isothermal vapor-liquid equilibrium measurements for the pentan-2-one + propan-1-ol/butan-1-ol system within 342--363 K. J. Chem. Eng. Data, 2019, vol. 64, no. 6, pp. 2649--2656. DOI: https://doi.org/10.1021/acs.jced.9b00100

[16] Jain P., Agogino A.M. Global optimization using the multistart method. J. Mech. Des., 1993, vol. 115, iss. 4, pp. 770--775. DOI: https://doi.org/10.1115/1.2919267

[17] Chipiga A.F., Kolkov D.A. Analiz metodov sluchaynogo poiska globalnykh ekstremumov mnogomernykh funktsiy. Fundamentalnye issledovaniya [Fundamental Research], 2006, no. 2, pp. 24--26 (in Russ.).