Preparation and Сharacterization of Biocomposite Films of Sodium Alginate/Kappa-Carrageenan/Iota-Carrageenan Loaded with Aminoethoxyvinylglycine

Authors: Villacres N.A., Cavalheiro E.T.G., Ferreira A.P.G., Venancio T., Alarcon H.A., Valderrama A.C. Published: 26.08.2023
Published in issue: #4(109)/2023  
DOI: 10.18698/1812-3368-2023-4-175-193

Category: Chemistry | Chapter: Physical Chemistry  
Keywords: alginate, carrageenan, plasticizers, films, aminoethoxyvinylglycine


This work focused on the development of a new biomaterial from polysaccharides. Thus composite films of sodium alginate, κ-carrageenan, and ι-carra-geenan plasticized with glycerol and poly(ethylene glycol) 400 (PEG 400) were prepared. The surface properties of the resulting films in terms of surface morphology were investigated. The best ratio between glycerol and PEG 400 used as plasticizers to prepare sodium alginate films was determined. Opacity, water content, SEM, TGA, and FTIR studies determined the optimal ratio between glycerol and PEG 400. The addition of carrageenans in the composite films showed differences in the TGA curves and on surface of the films. The composite film was loaded with an ethanolic solution of aminoethoxyvinylglycine (AVG). The AVG loaded in the composite film exhibited improved surface area, increased percent of crystallinity, and higher percent release at a lower temperature and its release kinetics were studied

The research was funded by the Peruvian government through Prociencia/World Bank Program (project grant 01-2018-FONDECYTBM-IADTUM)

Please cite this article as:

Villacres N.A., Cavalheiro E.T.G., Ferreira A.P.G., et al. Preparation and characterization of biocomposite films of sodium alginate/kappa-carrageenan/iota-carrageenan loaded with aminoethoxyvinylglycine. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2023, no. 4 (109), pp. 175--193. DOI: https://doi.org/10.18698/1812-3368-2023-4-175-193


[1] de Oliveira Filho J.G., Rodrigues J.M., Valadares A.C.F., et al. Active food packaging: alginate films with cottonseed protein hydrolysates. Food Hydrocoll., 2019, vol. 92, pp. 267--275. DOI: https://doi.org/10.1016/j.foodhyd.2019.01.052

[2] Lupina K., Kowalczyk D., Kazimierczak W. Gum arabic/gelatin and water-soluble soy polysaccharides/gelatin blend films as carriers of astaxanthin --- a comparative study of the kinetics of release and antioxidant properties. Polymers, 2021, vol. 13, iss. 7, art. 1062. DOI: https://doi.org/10.3390/polym13071062

[3] Li J., Xiang H., Zhang Q., et al. Polysaccharide-based transdermal drug delivery. Pharmaceuticals, 2022, vol. 15, iss. 5, art. 602.DOI: https://doi.org/10.3390/ph15050602

[4] Marangoni L., Rodrigues P.R., da Silva R.G., et al. Sustainable packaging films composed of sodium alginate and hydrolyzed collagen: preparation and characterization. Food Bioprocess Technol., 2021, vol. 14, no. 12, pp. 2336--2346. DOI: https://doi.org/10.1007/s11947-021-02727-7

[5] Malviya R., Tyagi A., Fuloria S., et al. Fabrication and characterization of chitosan --- tamarind seed polysaccharide composite film for transdermal delivery of protein/peptide. Polymers, 2021, vol. 13, iss. 9, art. 1531. DOI: https://doi.org/10.3390/polym13091531

[6] Fan Y., Yang J., Duan A., et al. Pectin/sodium alginate/xanthan gum edible composite films as the fresh-cut package. Int. J. Biol. Macromol., 2021, vol. 181, pp. 1003--1009. DOI: https://doi.org/10.1016/j.ijbiomac.2021.04.111

[7] Hasan N., Cao J., Lee J., et al. Development of clindamycin-loaded alginate/pectin/hyaluronic acid composite hydrogel film for the treatment of MRSA-infected wounds. J. Pharm. Investig., 2021, vol. 51, no. 5, pp. 597--610. DOI: https://doi.org/10.1007/s40005-021-00541-z

[8] Fahmy H.M., Aly A.A., Sayed S.M., et al. К-carrageenan/Na-alginate wound dressing with sustainable drug delivery properties. Polym. Adv. Met. Technol., 2021, vol. 32, iss. 4, pp. 1793--1801. DOI: https://doi.org/10.1002/pat.5218

[9] Chen J., Wu A., Yang M., et al. Characterization of sodium alginate-based films incorporated with thymol for fresh-cut apple packaging. Food Control, 2021, vol. 126, art. 108063. DOI: https://doi.org/10.1016/j.foodcont.2021.108063

[10] Anis A., Pal K., Al-Zahrani S.M. Essential oil-containing polysaccharide-based edible films and coatings for food security applications. Polymers, 2021, vol. 13, iss. 4, art. 575. DOI: https://doi.org/10.3390/polym13040575

[11] Pacheco E., Ruiz R., Veiga M. Carrageenan: drug delivery systems and other biomedical applications. Mar. Drugs, 2020, vol. 18, iss. 1, art. 583. DOI: https://doi.org/10.3390/md18110583

[12] de Lima Barizao C., Crepaldi M.I., de Oliveira O.S. Jr., et al. Biodegradable films based on commercial κ-carrageenan and cassava starch to achieve low production costs. Int. J. Biol. Macromol., 2020, vol. 165A, pp. 582--590. DOI: https://doi.org/10.1016/j.ijbiomac.2020.09.150

[13] Brenner T., Tuvikene R., Parker A., et al. Rheology and structure of mixed kappa-carrageenan/iota-carrageenan gels. Food Hydrocoll., 2014, vol. 39, pp. 272--279. DOI: https://doi.org/10.1016/j.foodhyd.2014.01.024

[14] Bharti S.K., Pathak V., Arya A., et al. Packaging potential of Ipomoea batatas and κ-carrageenan biobased composite edible film: its rheological, physicomechanical, barrier and optical characterization. J. Food Process. Preserv., 2021, vol. 45, iss. 2, art. e15153. DOI: https://doi.org/10.1111/jfpp.15153

[15] Guo S., Fu Z., Sun Y., et al. Effect of plasticizers on the properties of potato flour films. Starch, 2022, vol. 74, iss. 1-2, art. 2100179. DOI: https://doi.org/10.1002/star.202100179

[16] de Oliveira A.C.S., Ugucioni J.C., Borges S.V. Effect of glutaraldehyde/glycerol ratios on the properties of chitosan films. J. Food Process. Preserv., 2021, vol. 45, iss. 1, art. e15060. DOI: https://doi.org/10.1111/jfpp.15060

[17] Seslija S., Nesic A., Ruzic J., et al. Edible blend films of pectin and poly(ethylene glycol): Preparation and physico-chemical evaluation. Food Hydrocoll., 2018, vol. 77, pp. 494--501. DOI: https://doi.org/10.1016/j.foodhyd.2017.10.027

[18] Lecomte F., Siepmann J., Walther M., et al. Polymer blends used for the aqueous coating of solid dosage forms: importance of the type of plasticizer. J. Control Release, 2014, vol. 99, iss. 1, pp. 1--13. DOI: https://doi.org/10.1016/j.jconrel.2004.05.011

[19] Norcino L.B., Mendes J.F., Natarelli C.V.L., et al. Pectin films loaded with copaiba oil nanoemulsions for potential use as bio-based active packaging. Food Hydrocoll., 2020, vol. 106, art. 105862. DOI: https://doi.org/10.1016/j.foodhyd.2020.105862

[20] Siripatrawan U., Kaewklin P. Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocoll., 2018, vol. 84, pp. 125--134. DOI: https://doi.org/10.1016/j.foodhyd.2018.04.049

[21] Liu J., Islam M.T., Sherif S.M. Effects of aminoethoxyvinylglycine (AVG) and 1-methylcyclopropene (1-MCP) on the pre-harvest drop rate, fruit quality, and stem-end splitting in ‘Gala’ apples. Horticulturae, 2022, vol. 8, no. 12, art. 1100. DOI: https://doi.org/10.3390/horticulturae8121100

[22] Kent Peters N., Crist-Estes D.K. Nodule formation is stimulated by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol., 1989, vol. 91, iss. 2, pp. 690--693. DOI: https://doi.org/10.1104/pp.91.2.690

[23] Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci., 1963, vol. 52, iss. 12, pp. 1145--1149. DOI: https://doi.org/10.1002/jps.2600521210

[24] Korsmeyer R.W., Gurny R., Doelker E., et al. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm., 1983, vol. 15, iss. 1, pp. 25--35. DOI: https://doi.org/10.1016/0378-5173(83)90064-9

[25] Saberi B., Chockchaisawasdee S., Golding J.B., et al. Physical and mechanical properties of a new edible film made of pea starch and guar gum as affected by glycols, sugars and polyols. Int. J. Biol. Macromol., 2017, vol. 104, part A, pp. 345--359. DOI: https://doi.org/10.1016/j.ijbiomac.2017.06.051

[26] Cao N., Fu Y., He J. Preparation and physical properties of soy protein isolate and gelatin composite films. Food Hydrocoll., 2007, vol. 21, iss. 7, pp. 1153--1162. DOI: https://doi.org/10.1016/j.foodhyd.2006.09.001

[27] Ahmed A., Boateng J. Calcium alginate-based antimicrobial film dressings for potential healing of infected foot ulcers. Ther. Deliv., 2018, vol. 9, no. 3, pp. 185--204. DOI: https://doi.org/10.4155/tde-2017-0104

[28] Zia T., Usman M., Sabir A., et al. Development of inter-polymeric complex of anionic polysaccharides, alginate/k-carrageenan bio-platform for burn dressing. Int. J. Biol. Macromol., 2020, vol. 157, pp. 83--95. DOI: https://doi.org/10.1016/j.ijbiomac.2020.04.157

[29] Basiak E., Lenart A., Debeaufort F. How glycerol and water contents affect the structural and functional properties of starch-based edible films. Polymers, 2018, vol. 10, iss. 4, art. 412. DOI: https://doi.org/10.3390/polym10040412

[30] Kongjao S., Damronglerd S., Hunsom M. Purification of crude glycerol derived from waste used-oil methyl ester plant. Korean J. Chem. Eng., 2010, vol. 27, no. 3, pp. 944--949. DOI: https://doi.org/10.1007/s11814-010-0148-0

[31] Zheng H., Yang J., Han S. The synthesis and characteristics of sodium alginate/graphene oxide composite films crosslinked with multivalent cations. J. Appl. Polym. Sci., 2016, vol. 133, iss. 27, art. 43616. DOI: https://doi.org/10.1002/app.43616

[32] Khairuddin, Pramono E., Utomo S.B., et al. FTIR studies on the effect of concentration of polyethylene glycol on polimerization of shellac. J. Phys.: Conf. Ser., 2016, vol. 776, art. 012053. DOI: https://doi.org/10.1088/1742-6596/776/1/012053

[33] Gao C., Pollet E., Averous L. Properties of glycerol-plasticized alginate films obtained by thermo-mechanical mixing. Food Hydrocoll., 2017, vol. 63, pp. 414--420. DOI: https://doi.org/10.1016/j.foodhyd.2016.09.023

[34] Paula G.A., Benevides N.M.B., Cunha A.P., et al. Development and characterization of edible films from mixtures of κ-carrageenan, ι-carrageenan, and alginate. Food Hydrocoll., 2015, vol. 47, pp. 140--145. DOI: https://doi.org/10.1016/j.foodhyd.2015.01.004

[35] Campo V.L., Kawano D.F., Silva D.B., et al. Carrageenans: biological properties, chemical modifications and structural analysis --- a review. Carbohydr. Polym., 2009, vol. 77, iss. 2, pp. 167--180. DOI: https://doi.org/10.1016/j.carbpol.2009.01.020

[36] Bantang J.P., Bigol U.G., Camacho D.H. Gel and film composites of silver nanoparticles in κ-, ι-, and λ-carrageenans: one-pot synthesis, characterization, and bioactivities. BioNanoSci., 2021, vol. 11, no. 1, pp. 53--66. DOI: https://doi.org/10.1007/s12668-020-00806-1

[37] Mohamadnia Z., Zohuriaan-Mehr M., Kabiri K., et al. Ionically cross-linked carrageenan-alginate hydrogel beads. J. Biomater. Sci. Polym. Ed., 2008, vol. 19, iss. 1, pp. 47--59. DOI: https://doi.org/10.1163/156856208783227640

[38] Karthikeyan S., Selvasekarapandian S., Premalatha M., et al. Proton-conducting I-carrageenan-based biopolymer electrolyte for fuel cell application. Ionics, 2017, vol. 23, no. 10, pp. 2775--2780. DOI: https://doi.org/10.1007/s11581-016-1901-0

[39] Ghani N.A.A., Othaman R., Ahmad A., et al. Impact of purification on iota-carrageenan as solid polymer electrolyte. Arab. J. Chem., 2019, vol. 12, iss. 3, pp. 370--376. DOI: https://doi.org/10.1016/j.arabjc.2018.06.008

[40] Perumal P., Selvin P.C. Red algae-derived k-carrageenan-based proton-conducting electrolytes for the wearable electrical devices. J. Solid State Electrochem., 2020, vol. 24, no. 11, pp. 2249--2260. DOI: https://doi.org/10.1007/s10008-020-04724-w

[41] Li J., He J., Huang Y., et al. Improving surface and mechanical properties of alginate films by using ethanol as a co-solvent during external gelation. Carbohydr. Polym., 2015, vol. 123, pp. 208--216. DOI: https://doi.org/10.1016/j.carbpol.2015.01.040

[42] Sundarrajan P., Eswaran P., Marimuthu A., et al. One pot synthesis and characterization of alginate stabilized semiconductor nanoparticles. Bull. Korean Chem. Soc., 2012, vol. 33, iss. 10, pp. 3218--3224. DOI: https://doi.org/10.5012/BKCS.2012.33.10.3218

[43] Puerta M., Peresin M.S., Restrepo-Osorio A. Effects of chemical post-treatments on structural and physicochemical properties of silk fibroin films obtained from silk fibrous waste. Front. Bioeng. Biotechnol., 2020, vol. 8, art. 523949. DOI: https://doi.org/10.3389/fbioe.2020.523949

[44] Bataglioli R.A., Taketa T.B., Rocha Neto J.B.M., et al. Analysis of pH and salt concentration on structural and model-drug delivery properties of polysaccharide-based multilayered films. Thin Solid Films, 2019, vol. 685, pp. 312--320. DOI: https://doi.org/10.1016/j.tsf.2019.06.039