|

Investigation of the Low-Frequency Vibroacoustic Fields Influence on the Carbon Dioxide Absorption at the Liquid--Gas Phase Boundary

Authors: Boldyrev V.S., Bogatov N.A., Savina A.S., Zotkin A.P., Pentukhin E.I. Published: 15.12.2023
Published in issue: #6(111)/2023  
DOI: 10.18698/1812-3368-2023-6-55-69

 
Category: Chemistry | Chapter: Physical Chemistry  
Keywords: low-frequency acoustic effects, non-ferrous metals treatment, kinetics, sonochemical processes, optimal frequencies, etching, cavitation, absorption, dispersant

Abstrac

The work is a continuation of studying the influence of low-frequency acoustic axial low-energy vibrations of the infrasonic and early sound frequency ranges on the surface treatment rate of various structural materials, primarily those used in the radio electronics. Low-frequency vibration surface treatment of various alloys and semiconductors is one of the most promising modern tasks facing the domestic radio-electronic industry. Introduction of the low-frequency acoustic fields makes it possible to increase the rate in the metal surface treatment processes by 2--5 times. Currently, the so-called bubble etching method is widely used; it implies passing air bubbles through the etching solution during surface treatment. This allows intensifying the surface etching process and significantly increasing the rate (up to 3 times). Etching that uses the external acoustic field shows the similar results. Studies were performed to compare the process of gas dissolution in the field of low-frequency influences at the liquid-gas phase boundary and the process of bubbling the gas passing through distilled water. Experimental study results are presented explaining the reason for the etching processes acceleration in the low-frequency acoustic field due to the phenomenon of gas absorption at the phase boundary. A comparison of acoustic effects with bubbling and diffusion through the liquid-gas interface is provided

The work was funded by RFBR (project no. 20-33-90152) and the work was carried out according to the program of the State Assignment (no. FSFN-2023-0004)

Please cite this article in English as:

Boldyrev V.S., Bogatov N.A., Savina A.S., et al. Investigation of the low-frequency vibroacoustic fields influence on the carbon dioxide absorption at the liquid-gas phase boundary. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2023, no. 6 (111), pp. 55--69 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2023-6-55-69

References

[1] Fadeev G.N., Boldyrev V.S., Bogatov N.A., et al. Specifics of reduction-oxidation processes exposed to a low-frequency acoustic field. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2020, no. 1 (88), pp. 80--92 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2020-1-80-92

[2] Fadeev G.N., Boldyrev V.S., Averina Yu.M., et al. Metal surface treatment in a low-frequency exposure field. Tsvetnye metally, 2019, no. 10, pp. 73--77 (in Russ.). DOI: https://doi.org/10.17580/tsm.2019.10.12

[3] Boldyrev V., Men’shikov V., Savina A., et al. Development and application of removable varnish for wall protection paint coating booths. Proc. METAL, 2021, pp. 675--678. DOI: https://doi.org/10.37904/metal.2021.4164

[4] Essola D., Jean Ch.A., Ngayihi Abbe C.V., et al. Enhancement of metallic machine parts mechanical properties by the use of vibratory processing for oxide coated films formation and MoS2 solid lubricant coating deposit. Int. J. Mech. Mater. Eng., 2019, vol. 14, art. 8. DOI: https://doi.org/10.1186/s40712-019-0103-8

[5] Essola D., Njomoue A.P., Offole F., et al. Low frequency vibratory cleaning of paint and rust contaminants from machines parts. Proc. Inst. Mech. Eng. B: J. Eng. Manuf., 2021, vol. 236, no. 4, pp. 387--400. DOI: https://doi.org/10.1177/09544054211031451

[6] Essola D., Offole F., Nikongho A.J., et al. A study on the experimental investigation of low frequency vibration wave assisted disassembly of press-fit joints. J. Manuf. Process., 2020, vol. 49, pp. 70--81. DOI: https://doi.org/10.1016/j.jmapro.2019.11.014

[7] Aparicio Alcalde M., Quevedo H., Svaiter N.F. Single-bubble sonoluminescence as dicke superradiance at finite temperature. Physica A, 2014, vol. 416, pp. 142--148. DOI: https://doi.org/10.1016/j.physa.2014.08.044

[8] Wang M., Zhou Y. Numerical investigation of the inertial cavitation threshold by dual-frequency excitation in the fluid and tissue. Ultrason. Sonochem., 2018, vol. 42, pp. 327--338. DOI: https://doi.org/10.1016/j.ultsonch.2017.11.045

[9] Thiemann A., Holsteys F., Cairos C., et al. Sonoluminescence and dynamics of cavitation bubble populations in sulfuric acid. Ultrason. Sonochem., 2017, vol. 34, pp. 663--676. DOI: https://doi.org/10.1016/j.ultsonch.2016.06.013

[10] Klinov I.Ya. Korroziya khimicheskoy apparatury i korrozionno-stoykie materialy [Corrosion of chemical equipment and corrosion-resistant materials]. Moscow, Mashinostroenie Publ., 1960.

[11] Kudakov U.D., Silaev I.V., Nakonechnikov A.V., et al. Influence of gases dissolved in technological liquids on the quality of semiconductor surface treatment. Sovremennye naukoemkie tekhnologii [Modern High Technologies], 2010, no. 2, pp. 30--31 (in Russ.).

[12] Artamonov V.P., Artamonov V.V., Bykov P.O., et al. Investigation into etching of copper in hydrazine. Izvestiya vuzov. Tsvetnaya metallurgiya [Izvestiya. Non-Ferrous Metallurgy], 2015, no. 1, pp. 18--21 (in Russ.). DOI: https://doi.org/10.17073/0021-3438-2015-1-18-21

[13] ITS 36-2017. Obrabotka poverkhnostey metallov i plastmass s ispolzovaniem elektroliticheskikh ili khimicheskikh protsessov [Surface treatment of metals and plastics using electrolytic or chemical processes]. Moscow, Byuro NDT Publ., 2017.

[14] Tereshkin V., Grigoryeva L., Kolesnichenko D. Complex electrochemical system "Etching-regeneration" for boards of the 5th and higher accuracy classes. Tekhnologii v elektronnoy promyshlennosti, 2015, no. 4, pp. 6--9 (in Russ.).

[15] Knyazev V.A. Sovershenstvovanie tekhnologii predvaritelnoy ochistki vysokokontsentrirovannykh stochnykh vod galvanoproizvodstv. Dis. kand. tekh. nauk [Improving technology of pre-treatment of highly concentrated wastewater from galvanizing plants. Cand. Sc. (Eng.) Diss.]. Penza, PGUAS Publ., 2017.

[16] Kudakov U.D., Silaev I.V., Nakonechnikov A.V. et al. Removal of dissolved gases from working solutions used in the production of semiconductor devices. Mezhdunarodnyy zhurnal prikladnykh i fundamentalnykh issledovaniy, 2019, no. 5, p. 107 (in Russ.).

[17] Averina Yu.M., Asnis N.A., Vagramyan T.A., et al. Study of the oxidation rate of Fe2+ ions in water during air bubbling. Theor. Found. Chem. Eng., 2018, vol. 52, no. 1, pp. 74--77. DOI: https://doi.org/10.1134/S0040579518010013

[18] Kodzuka Kh., Inoue M., Imura K., et al. Mikropuzyrkovaya sistema ochistki dlya krupnogo izdeliya, takogo kak transportnoe sredstvo [Micro-bubble system for lathe-size articles as vehicle]. Patent RU 2507014. Appl. 24.02.2011, publ. 20.02.2014 (in Russ.).

[19] Sachek N.Dzh. Sposob udaleniya zagryaznyayushchikh veshchestv iz vykhodyashchikh gazov [Method for removing pollutant substances from leaving gases]. Patent RU 2648894. Appl. 13.01.2014, publ. 28.03.2018 (in Russ.).

[20] Krivoshein D.A., Piskunov V.A., Zubarev Yu.V., et al. Sposob travleniya medi i ee splavov [Method of copper and its alloys etching]. Patent RU 2013466. Appl. 18.11.1991, publ. 30.05.1994 (in Russ.).

[21] Brusnitsyna L.A., Stepanovskikh E.I. Tekhnologiya izgotovleniya pechatnykh plat [Printed circuit board manufacturing technology]. Ekaterinburg, Ural Univ. Publ., 2015.

[22] Beckert M., Klemm H. Handbuch der metallographischen Atzverfahren. VEB Deutscher Verlag fur Grundstoffindustrie, 1966.

[23] Menshikov V.V., Boldyrev V.S., Bogatov N.A., et al. Ustroystvo dlya intensifikatsii khimicheskikh protsessov v zhidkoy srede [Device for the intensification of chemical processes in a liquid medium]. Patent RU 206891. Appl. 20.04.2021, publ. 30.09.2021 (in Russ.).

[24] Bogatov N.A., Boldyrev V.S., Savina A.S., et al. Ustroystvo dlya akusticheskoy intensifikatsii fiziko-khimicheskikh protsessov v zhidkikh rastvorakh [Device for acoustic intensification of physical and chemical processes in liquid solutions]. Patent RU 213619. Appl. 27.04.2022, publ. 19.09.2022 (in Russ.).

[25] Taube P.R., Baranova A.G. Khimiya i mikrobiologiya vody [Chemistry and microbiology of water]. Moscow, Vysshaya shkola Publ., 1983.

[26] Margulis I.M., Margulis M.A. Interaction dynamics of bubbles in a cavitation cloud. Russian Journal of Physical Chemistry A, 2004, vol. 78, no. 7, pp. 1159--1170.

[27] Margulis M.A. Osnovy zvukokhimii [Fundamentals of sound chemistry]. Moscow, Vysshaya shkola Publ., 1984.

[28] Margulis M.A., Grundel L.M. Chemical action of low-frequency acoustic oscillations. Doklady AN SSSR, 1982, vol. 256, no. 2, pp. 914--917 (in Russ.).

[29] Boldyrev V.S. Deystvie nizkochastotnykh kolebaniy na biokhimicheski aktivnye struktury. Dis. kand. tekh. nauk [Effect of low-frequency oscillations on bioactive structures. Cand. Sc. (Eng.) Diss.]. Moscow, MUCTR Publ., 2013 (in Russ.).

[30] Bogomolov B.B., Boldyrev V.S., Zubarev A.M., et al. Intelligent logical information algorithm for choosing energy- and resource-efficient chemical technologies. Theor. Found. Chem. Eng., 2019, vol. 53, no. 5, pp. 709--718. DOI: https://doi.org/10.1134/S0040579519050270

[31] Boldyrev V.S., Averina Yu.M., Menshikov V.V., et al. Technological and organizational engineering of paint processing. Theor. Found. Chem. Eng., 2020, vol. 54, no. 3, pp. 420--424. DOI: https://doi.org/10.1134/S004057952003001X

[32] Boldyrev V.S., Kuznetsov S.V., Menshikov V.V. Innovatsionnoe razvitie malotonnazhnykh nauchno-proizvodstvennykh predpriyatiy lakokrasochnoy otrasli [Innovative development of small-tonnage scientific and production enterprises of paint and coating industry]. Moscow, Peynt-Media Publ., 2021.