Studying the Deposition Parameters Effect on Formation of the Vanadium(V) Oxide Nanoparticles Catalytically Active Layer on the Ceramic Membranes Surface

Authors: Yarovaya O.V., Averina Yu.M., Magzhanov R.Kh., Karetkin B.A., Panfilov V.I., Boldyrev V.S. Published: 11.03.2024
Published in issue: #1(112)/2024  
DOI: 10.18698/1812-3368-2024-1-118-132

Category: Chemistry | Chapter: Physical Chemistry  
Keywords: ceramic membranes, vanadium pentoxide, nanoparticles, aqueous dispersions, catalytically active layer


Nanoparticles production and the related additive processes are being developed at a rapid pace. Space industry, automotive industry, electronics, medicine and biotechnology are just a short list of the nanoparticles and their by-products consumers. A technology was developed for applying a catalyst layer based on the vanadium pentoxide nanoparticles onto the membrane ceramic elements, which could potentially be used both in the biomass, technological gases and liquids separation processes, and in manufacture of the large-scale inorganic products (for example, the sulfuric acid). It was established that main influence on the resulting coating properties (no cracks and high adhesion to the substrate) was exerted by the nanoparticles concentration in the solution (ash). Samples of the ceramic membranes with deposited layers of vanadium nanoparticles and a layer thickness of up to 1 µm were obtained. Based on data on the surface porosity, an assumption was made on maintaining filtering properties of the membrane elements with an increase in filtration rating due to the nanoparticles surface layer. Comparison of the resulting membrane sample with an analogue showed that the proposed technology for applying the nanoparticles and the resulting layer of equivalent thickness contained 20 times more of the active component. This application technology and the membrane element would further expand capabilities in biotechnologies and chemical production

This work was supported by the Russian Science Foundation (project no. 21-19-00367)

Please cite this article in English as:

Yarovaya O.V., Averina Yu.M., Magzhanov R.Kh., еt al. Studying the deposition parameters effect on formation of the vanadium(V) oxide nanoparticles catalytically active layer on the ceramic membranes surface. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2024, no. 1 (112), pp. 118--132 (in Russ.). EDN: HPAHEU


[1] Schimmoeller B., Schulz H., Pratsinis S.E., et al. Ceramic foams directly-coated with flame-made V2O5/TiO2 for synthesis of phthalic anhydride. J. Catal., 2006, vol. 243, iss. 1, pp. 82--92.DOI: https://doi.org/10.1016/j.jcat.2006.07.007

[2] Farzaneh F., Zamanifar E., Foruzin L.J., et al. Synthesis and characterization of V2O5/SiO2 nanoparticles as efficient catalyst for aromatization 1,4-dihydropyridines. J.Sci.I.R.I., 2012, vol. 23, no. 4, pp. 313--318. DOI: https://doi.org/10.22059/JSCIENCES.2012.30551

[3] Lei Z., Long A., Wen C., et al. Experimental and kinetic study of low temperature selective catalytic reduction of NO with NH3 over the V2O5/AC catalyst. Ind. Eng. Chem. Res., 2011, vol. 50, iss. 9, pp. 5360--5368. DOI: https://doi.org/10.1021/ie102110r

[4] Huang Z., Zhu Z., Liu Z. Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures. Appl. Catal. B, 2002, vol. 39, iss. 4, pp. 361--368. DOI: https://doi.org/10.1016/S0926-3373(02)00122-4

[5] Boukhalfa S., Evanoff K., Yushin G. Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes. Energy Environ. Sci., 2012, vol. 5, iss. 5, pp. 6872--6879. DOI: https://doi.org/10.1039/C2EE21110F

[6] Chen X., Pomerantseva E., Banerjee P., et al. Ozone-based atomic layer deposition of crystalline V2O5 films for high performance electrochemical energy storage. Chem. Mater., 2012, vol. 24, iss. 7, pp. 1255--1261. DOI: https://doi.org/10.1021/cm202901z

[7] Peng C., Jin M., Han D., et al. Structural engineering of V2O5 nanobelts for flexible supercapacitors. Mater. Lett., 2022, vol. 320, art. 132391. DOI: https://doi.org/10.1016/j.matlet.2022.132391

[8] Petrov M.M., Pichugov R.D., Loktionov P.A., et al. Test cell for membrane electrode assembly of the vanadium redox flow battery. Dokl. Phys. Chem., 2020, vol. 491, no. 1, pp. 19--23. DOI: https://doi.org/10.1134/S0012501620030021

[9] Loktionov P., Kartashova N., Konev D., et al. Fluoropolymer impregnated graphite foil as a bipolar plates of vanadium flow battery. Int. J. Energy Res., 2022, vol. 46, iss. 8, pp. 10123--10132. DOI: https://doi.org/10.1002/er.7088

[10] Loktionov P., Pichugov R., Konev D., et al. Promising material based on paraffin-impregnated graphite foil with increased electrochemical stability for bipolar plates of vanadium redox flow battery. Chemistry Select, 2021, vol. 6, iss. 46, pp. 13342--13349. DOI: https://doi.org/10.1002/slct.202103996

[11] Abdullah T.A., Juzsakova T., Rasheed R.T., et al. V2O5 nanoparticles for dyes removal from water. Chem. J. Mold., 2021, vol. 16, no. 2, pp. 102--111. DOI: http://dx.doi.org/10.19261/cjm.2021.911

[12] Alrammouz R., Lazerges M., Pironon J., et al. V2O5 gas sensors: a review. Sens. Actuator A Phys., 2021, vol. 332, part 2, art. 113179. DOI: https://doi.org/10.1016/j.sna.2021.113179

[13] Hosseini-Ardali S., Fattahi M., Kazemeini M., et al. Preparation, physiochemical and kinetic investigations of V2O5/SiO2 catalyst for the sulfuric acid production. Int. J. Eng., 2016, vol. 29, no. 11, pp. 1478--1488. DOI: https://doi.org/10.5829/idosi.ije.2016.29.11b.01

[14] Vo P.N.X., Le-Phuc N., Tran T.V., et al. Oxidative regeneration study of spent V2O5 catalyst from sulfuric acid manufacture. Reac. Kinet. Mech. Cat., 2018, vol. 125, no. 2, pp. 887--900. DOI: https://doi.org/10.1007/s11144-018-1442-9

[15] Mikenin P.E., Tsyrulnikov P.G., Kotolevich Yu.S., et al. The vanadium oxide catalysts on the base of the structured micro-fibrous support for selective oxidation of H2S. Kataliz v promyshlennosti, 2015, no. 1, pp. 64--69 (in Russ.). DOI: https://doi.org/10.18412/1816-0387-2015-1-64-69

[16] Mukhlenov I.P., ed. Tekhnologiya katalizatorov [Catalyst technology]. Leningrad, Khimiya Publ., 1989.

[17] Lavrishcheva S.A., Nefedova L.A., Kuznetsova S.M., et al. Sulfur-acod vanadium catalyst based on natural silicate carriers. Izvestiya vysshikh uchebnykh zavedeniy. Ser. Khimiya i khimicheskaya tekhnologiya [ChemChemTech], 2005, vol. 48, no. 1, pp. 105--109 (in Russ.).

[18] Grishin A.N., Lavrishcheva S.A., Nefedova L.A. Formation of vanadium containing thin-layer of the covering of block catalysts of clearing of waste gases from the sulfur dioxide. Izvestiya SPbGTI (TU) [Bulletin of the Saint Petersburg State Institute of Technology (Technical University)], 2011, no. 12, pp. 21--23 (in Russ.).

[19] Kharlamova T.S., Urazov Kh.Kh., Vodyankina O.V. Effect of modification of supported V2O5/SiO2 catalysts by lanthanum on the state and structural peculiarities of vanadium. Kinet. Catal., 2019, vol. 60, no. 4, pp. 465--473. DOI: https://doi.org/10.1134/S0023158419040050

[20] Wojciechowska M., Nowinska K., Kania W., et al. Magnesium fluoride as a support for vanadium catalysts. React. Kinet. Catal. Lett., 1975, vol. 2, no. 3, pp. 229--236. DOI: https://doi.org/10.1007/BF02068195

[21] Averina J.M., Subcheva E.N., Cherednichenko A.G., et al. Nanofiltration composite membranes using layered double hydroxides for water treatment. 20th International Multidisciplinary Scientific GeoConference SGEM, 2020, vol. 3.1, pp. 273--280. DOI: https://doi.org/10.5593/sgem2020/3.1/s12.036

[22] Averina Y.M., Subcheva E.N., Kurbatov A.Yu., et al. Study of the oxidation process of divalent iron in aqueous solutions during aeration through ceramic membranes modified by layered double hydroxides. IOP Conf. Ser.: Earth Environ. Sci., 2021, vol. 815, no. 1, art. 012018. DOI: https://doi.org/10.1088/1755-1315/815/1/012018

[23] Nyan H.L., Aung K.Z., Yarovaya O.V., et al. Catalytically active membranes for decomposition of organic compounds in aqueous solutions. IOP Conf. Ser.: Earth Environ. Sci., 2021, vol. 815, no. 1, art. 012022. DOI: https://doi.org/10.1088/1755-1315/815/1/012022

[24] Kuzin E., Averina Yu., Kurbatov A., et al. Titanium-containing coagulants in wastewater treatment processes in the alcohol industry. Processes, 2022, vol. 10, iss. 3, art. no. 440. DOI: https://doi.org/10.3390/pr10030440

[25] Brauer G. Handbuch der Präparativen Anorganischen Chemie. F. Enke, 1981.

[26] Averina Yu.M., Kurbatov A.Yu., Sakharov D.A., et al. Development of technology for nanofiltration ceramic membranes. Steklo i keramika [Glass and Ceramics], 2020, no. 3, pp. 22--27 (in Russ.).

[27] Averina Yu.M., Asnis N.A., Vagramyan T.A., et al. Study of the oxidation rate of Fe2+ ions in water during air bubbling. Theor. Found. Chem. Eng., 2018, vol. 52, no. 1, pp. 74--77. DOI: https://doi.org/10.1134/S0040579518010013