|

Investigation and Simulation of Biodegradation Suppression in Electroless Nickel Plating Baths

Authors: Vinokurov E.G., Skichko A.S., Mukhametova G.M., Kozhukhar O.Yu., Burukhina T.F., Meshalkin V.P. Published: 09.08.2020
Published in issue: #4(91)/2020  
DOI: 10.18698/1812-3368-2020-4-103-122

 
Category: Chemistry | Chapter: Physical Chemistry  
Keywords: bath biodegradation, electroplating, growth inhibition, kinetic parameters, filamentous fungi, simulation, Verhulst model, fungicides, electroless nickel plating

The paper considers proliferation of filamentous fungi in electroless nickel plating baths. We determined that it leads to decomposition of processing media and decreased coating deposition rates. We developed a mathematical model for suppressing filamentous fungi growth in electroless nickel plating solutions in the presence of various inhibitors. The model allows us to predict microorganism proliferation rate under the conditions specified. We used experimental data and mathematical simulation as the basis for investigating processing media biodegradation in electroless nickel plating. Our mathematical simulation showed that it is possible to use the Verhulst model to describe the growth kinetics of filamentous fungi colonies. It also allowed us to determine the parameters of the process kinetics, to predict bath electrolyte stability and select efficient inhibitors. We validate our selection of inhibitor substances (copper sulphate, sodium tetraborate, lactic acid, sodium propionate, chloroform) that have a fungistatic or fungicidal effect on biological object proliferation. We developed a mathematical model for the process of inhibiting processing media biodegradation in electroless nickel plating by means of various substances. We substantiate the ambiguity of selecting the initial condition for stating the Cauchy problem in the mathematical description of the process. We present and analyse the results of mathematically simulating the process under consideration. We found sodium tetraborate to be the most efficient biological object proliferation inhibitor, since, as its concentration increases to 50 mmol/l, there is no deterioration in the coating quality; at the same time, the coating deposition rate increases and the necessary fungicidal effect

The study was supported by the Ministry of Education and Science of the Russian Federation as part of the government assignment 10.4556.2017/6.7

References

[1] Mindubaev A.Z., Voloshina A.D., Babynin E.V., et al. Microbiological degradation of white phosphorus. Ekologiya i promyshlennost’ Rossii [Ecology and Industry of Russia], 2018, vol. 22, no. 1, pp. 33--37 (in Russ.). DOI: https://doi.org/10.18412/1816-0395-2018-1-33-37

[2] Skichko A.S., Kol’tsova E.M. Mathematical model for describing oscillations of bacterial biomass. Theor. Found Chem. Eng., 2006, vol. 40, no. 5, pp. 503--513. DOI: https://doi.org/10.1134/S0040579506050071

[3] Mukhametova G.M., Vinokurov E.G., Babusenko E.S., et al. Biodegradation of solutions for chemical nickelation. Izvestiya vysshikh uchebnykh zavedeniy. Seriya: Khimiya i khimicheskaya tekhnologiya [Russian Journal of Chemistry and Chemical Technology], 2018, vol. 61, no. 9-10, pp. 89--97 (in Russ.). DOI: https://doi.org/10.6060/ivkkt.20186109-10.5792

[4] Sizentsov A.N., Kvan O.V., Vishnyakov A.I., et al. The use of probiotic preparations on basis of bacteria of a genus bacillus during intoxication of lead and zinc. Life Sci. J., 2014, vol. 11, no. 10, pp. 18--20.

[5] Peshkov S.A., Sizentsov A.N., Nikiyan A.N., et al. Estimation of bioaccumulative ability of heavy metals by Bacillus bacteria with the use of roentgen-fluorescent analysis and atomic force microscopy. Sovremennye problemy nauki i obrazovaniya [Modern Problems of Science and Education], 2015, no. 4 (in Russ.). Available at: https://science-education.ru/ru/article/view?id=21079

[6] Buzoleva L.S., Krivosheeva A.M. Effects of heavy metals on pathogens bacteria. Uspekhi sovremennogo estestvoznaniya [Advances in Сurrent Natural Sciences], 2013, no. 7, pp. 30--33 (in Russ.).

[7] Kuimova N.G., Moiseenko V.G. Biogenic gold mineralization in nature and in experiment. Litosfera [Lithosphere], 2006, no. 3, pp. 83--95 (in Russ.).

[8] Joshi P.K., Swarup A., Maheshwari S., et al. Bioremediation of heavy metals in liquid media through fungi isolated from contaminated sources. Indian J. Microbiol., 2011, vol. 51, no. 4, pp. 482--497. DOI: https://doi.org/10.1007/s12088-011-0110-9

[9] Anahid S., Yaghmaei S., Ghobadinejad Z. Heavy metal tolerance of fungi. Sci. Iran., 2011, vol. 18, iss. 3, pp. 502--508. DOI: https://doi.org/10.1016/j.scient.2011.05.015

[10] Levinskaite L., Smirnov A., Luksiene B., et al. Pu(IV) and Fe(III) accumulation ability of heavy metal-tolerant soil fungi. Nukleonika, 2009, vol. 54, no. 4, pp. 285--290.

[11] Price M.S., Classen J.J., Payne G.A. Aspergillus niger absorbs copper and zinc from swine wastewater. Bioresour. Technol., 2001, vol. 77, iss. 1, pp. 41--49. DOI: https://doi.org/10.1016/S0960-8524(00)00135-8

[12] Pumpel T., Schinner F. Silver tolerance and silver accumulation of microorganisms from soil materials of a silver mine. Appl. Microbiol. Biotechnol., 1986, vol. 24, no. 3, pp. 244--247. DOI: https://doi.org/10.1007/BF00261545

[13] Binsadiq A.R.H. Fungal absorption and tolerance of heavy metals. JAST, 2015, vol. 5, pp. 77--80.

[14] Xu X., Xia L., Zhu W., et al. Role of Penicillium chrysogenum XJ-1 in the detoxification and bioremediation of cadmium. Front. Microbiol., 2015, vol. 6, art. 1422. DOI: https://doi.org/10.3389/fmicb.2015.01422

[15] Sujoy K. Das, Liang J., Schmidt M., et al. Biomineralization mechanism of gold by Zygomycete Fungi Rhizopous oryzae. ACS Nano, 2012, vol. 6, no. 7, pp. 6165--6173. DOI: https://doi.org/10.1021/nn301502s

[16] Akhtar S., Mahmood-ul-Hassan M., Ahmad R., et al. Metal tolerance potential of filamentous fungi isolated from soils irrigated with untreated municipal effluent. Soil Environ., 2013, vol. 32, no. 1, pp. 56--62.

[17] Karpov V.A., Koval’chuk Yu.L., Kharchenko U.V., et al. Influence of microfouling on sea corrosion and destruction of protective coating. Korroziya: materialy, zashchita [Corrosion: Materals, Protection], 2011, no. 3, pp. 11--18 (in Russ.).

[18] Koval’chuk Yu.L., Poltarukha O.P., Karpov V.A. The macrofouling community development and corrosion dynamics on 12Х18Н10Т stainless steel in tropical waters. Voda: khimiya i ekologiya [Water: Chemistry and Ecology], 2011, no. 10, pp. 93--98 (in Russ.).

[19] Vagramyan T.A., Nevmyatullina Kh.A., Temkin S.M. Electrodeposition of copper--zinc alloy from citrate solutions. Zashchita metallov, 1991, vol. 27, no. 1, pp. 146--147 (in Russ.).

[20] Vinokurov E.G., Zhigunov F.N., Morgunov A.V., et al. Effect of temperature on the kinetics of electroless nickel plating from glycinate solutions. Gal’vanotekhnika i obrabotka poverkhnosti [Electroplating and Surface Treatment], 2015, vol. 23, no. 3, pp. 40--46 (in Russ.).

[21] Galvano- und Oberflachentechnik-treff: im Fokus. Galvanotechnik, 2016, vol. 107, no. 1, pp. 120--122.

[22] Galvano- und Oberflachentechnik-treff: im Fokus. Galvanotechnik, 2016, vol. 107, no. 1, pp. 120--122.

[23] Fadina S.V., Vinokurov E.G., Burukhina T.F., et al. Estimating the potential of resource conservation in metal electroplating based on the stability index for the composition of solutions. Theor. Found. Chem. Eng., 2014, vol. 48, no. 6, pp. 842--847. DOI: https://doi.org/10.1134/S0040579514060037

[24] Fadina S.V., Vinokurov E.G., Burukhina T.F., et al. Total concentration of main components in solutions for metal electroplating as a criterion for classifying and choosing resource-saving compositions of solutions. Theor. Found. Chem. Eng., 2013, vol. 47, no. 5, pp. 593--599. DOI: https://doi.org/10.1134/S0040579513040222

[25] Vinokurov E.G., Burukhina T.F., Karanaeva M.N., et al. Predicting the preferable range of the total concentrations of metal ions in solutions for alloy electrodeposition. Theor. Found. Chem. Eng., 2008, vol. 42, no. 6, pp. 868--872. DOI: https://doi.org/10.1134/S0040579508060080

[26] Matolcsy G., Nadasy M., Andriska V. (eds.). Fungicides. Stud. Environ. Sci., 1988, vol. 32, pp. 272--486. DOI: https://doi.org/10.1016/S0166-1116(08)71130-0

[27] Nikitin M.K., Mel’nikova E.P. Khimiya v restavratsii [Chemistry in restoration]. Leningrad, Khimiya Publ., 1990.