|

Selection of parameters for computational algorithms while solving the problem of rough bodies contact with ANSYS

Authors: Murashov M.V. Published: 16.02.2016
Published in issue: #1(64)/2016  
DOI: 10.18698/1812-3368-2016-1-111-121

 
Category: Informatics, Computer Engineering and Control | Chapter: Mathematical Modelling. Numerical Methods, and Software Systems  
Keywords: thermal contact conductance, roughness, finite element method, elastic-plastic deformation, ANSYS

The process of finding a numerical solution to contact deformation problems of two rough bodies is difficult due to many parameters of computational algorithms,as well as special features of finite-element models, which significantly affect the results. Both the elastic-plastic deformation of the materials and the geometry change of the contacting rough surfaces result in appearing a nonlinear deformation problem and often cause an extra difficulty in computing. The paper considers the impact of one parameter of the augmented Lagrangian method (a penetration tolerance) on the determined real contact area. The contact problem solution for the rough area of micron sizes with ANSYS is taken as an example. The author gives recommendations for selecting values of this parameter in order to avoid physically improbable solutions. The impact of the load step is analyzed. Different strategies of the load step modifications during the computational process are considered.

References

[1] Murashov M.V., Panin S.D. Modeling of thermal contact conductance. Proc. of the International heat transfer conference IHTC-14. August 8-13, 2010, Washington, DC, USA, vol. 6, pp. 387-392. DOI: 10.1115/IHTC14-22616

[2] Murashov M.V., Panin S.D. Modelling of thermal contact resistance. Tr. 5-y Ross. nacionalnoy konf. po teploobmenu [Proc. of the fifth Russian national conf. on heat transfer]. Moscow, MEI Publ., 2010, vol. 7, pp. 142-145 (in Russ.).

[3] Murashov M.V., Panin S.D. Numerical modelling of contact heat transfer problem with work hardened rough surfaces. International J. of Heat and Mass Transfer, 2015, vol. 90, pp. 72-80. DOI: 10.1016/j.ijheatmasstransfer.2015.06.024

[4] Cheng L., Hannaford B. Finite Element Analysis for evaluating liver tissue damage due to mechanical compression. J. of Biomechanics, 2015, vol. 48, pp. 948-955. D0I:10.1016/j.jbiomech.2015.02.014

[5] Alvarez-Arenal A., Lasheras F.S., Fernandez E.M., Gonzalez I. A jaw model for the study of the mandibular flexure taking into account the anisotropy of the bone. Mathematical and Computer Modelling, 2009, vol. 50, pp. 695-704. D0I:10.1016/j.mcm.2008.12.029

[6] Lanoue F., Vadean A., Sanschagrin B. Finite element analysis and contact modelling considerations of interference fits for fretting fatigue strength calculations. Simulation Modelling Practice and Theory, 2009, vol. 17, pp. 1587-1602. D0I:10.1016/j.simpat.2009.06.017

[7] Diaz J.J. del C., Nieto P.J.G., Biempica C.B., Rougeot G.F. Non-linear analysis of unbolted base plates by the FEM and experimental validation. Thin-Walled Structures, 2006, vol. 44, pp. 529-541. D0I:10.1016/j.tws.2006.04.008

[8] Yan W., Komvopoulos K. Contact analysis of elastic-plastic fractal surfaces. J. of Applied Physics, 1998, vol. 84, pp. 3617-3624. DOI: 10.1063/1.368536

[9] Kalpin Yu.G., Perfilov V.I., Petrov P.A., Ryabov V.A., Filippov Yu.K. Soprotivlenie deformatsii i plastichnost metallov pri obrabotke davleniem [Resistance to deformation and plasticity of metals treated by pressure]. Moscow, Maschinostroenie Publ., 2011, 244 p.

[10] Shlykov Yu.P., Ganin E.A., Tsarevskiy S.N. Kontaktnoe termicheskoe soprotivlenie [Thermal contact resistance]. Moscow, Energiya Publ., 1977. 328 p.

[11] Yang C., Persson B.N.J. Contact mechanics: contact area and interfacial separation from small contact to full contact. J. of Physics: Condensed Matter, 2008, vol. 20, no. 21, 215214, 13 p. DOI:10.1088/0953-8984/20/21/215214