|

Aircraft movement in a vertical plane with state constraints

Authors: Velishchanskiy M.A. Published: 15.06.2016
Published in issue: #3(66)/2016  
DOI: 10.18698/1812-3368-2016-3-70-81

 
Category: Informatics, Computer Engineering and Control | Chapter: System Analysis, Control and Information Processing  
Keywords: terminal control, phase curve, state constraints

The problem under consideration is trajectory planning of an aircraft in a vertical plane with variable state constraints. The time of maneuver is considered to be known. The main problem is to find the permissible trajectory which meets given requirements. The most developed methods for solving similar problems do not allow us to take into account the restrictions on the system condition. The approach applied in this work allows us to automatically take into account the current restrictions during the required trajectory construction, not using any iterative methods. Building a program trajectory is carried out in a certain class of functions. The paper proposes an optimization approach to choosing the trajectory. The program control implementing this trajectory is based on the concept of inverse dynamic problems. It enables us to synthesize a proper program control, to build the control stabilizing program trajectories and to choose numerical optimization of the trajectory by a definite criterion. We describe a nonlinear mathematical model of the plane movement as a material point in the trajectory reference frame. We illustrate the findings of the research with examples and show the results of numerical modeling.

References

[1] Krishchenko A.P., Kanatnikov A.N., Tkachev S.B. Admissible spatial trajectories of the unmanned aerial vehicle in a vertical plane. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science & Education of the Bauman MSTU. Electronic Journal], 2012, no. 3. Available at: http://technomag.bmstu.ru/en/doc/367724.html

[2] Kanatnikov A.N., Krishchenko A.P. Terminal Control of Spatial Motion of Flying Vehicles. Journal of Computer and Systems Sciences International, 2008, vol. 47, no. 5, pp. 718-731.

[3] Levine J., Martin Ph., Rouchon P. Flat systems. Mini-Course. ECC’ 97 European Control Conference. Brussels, 1997, July 1-4. 54 p.

[4] Krishchenko A.P., Fetisov D.A. Transformation of Affine Systems and Solving of Terminal Control Problems. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2013, no. 2, pp. 3-16 (in Russ.).

[5] Krishchenko A.P., Fetisov D.A. Terminal control problem for affine systems. Differential Equations, 2013, vol. 49, no. 11, pp. 1378-1388. DOI: 10.1134/S0012266113110062

[6] Krishchenko A.P., Fetisov D.A. Terminal problem for multidimensional affine systems. Doklady Mathematics, 2013, vol. 88, no. 2, pp. 608-612. DOI: 10.1134/S1064562413050098

[7] Fetisov D.A. Solution of Terminal Problems for Affine Systems in Quasicanonical Form on the Basis of Orbital Linearization. Differential Equations, 2014, vol. 50, no. 12, pp. 1664-1672. DOI: 10.1134/S0012266114120106

[8] Kasatkina T.S., Krishchenko A.P. Variations Method to Solve Terminal Problems for the Second Order Systems of Canonical Form with State Constraints. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science & Education of the Bauman MSTU. Electronic Journal], 2012, no. 5. DOI: 10.7463/0515.0766238 Available at: http://technomag.bmstu.ru/en/doc/766238.html

[9] Krut’ko P.D. Obratnye zadachi dinamiki upravlyaemykh sistem: nelineynye modeli [Inverse problems of control system dynamics. Nonlinear models]. Moscow, Nauka Publ., 1988.

[10] Krishchenko A.P. Parametric Sets of Integral Equations Solutions. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2014, no. 3, pp. 3-10 (in Russ.).

[11] Velishchanskiy M.A., Krishchenko A.P. A Terminal Control Problem for the Second Order System with Restrictions. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science & Education of the Bauman MSTU. Electronic Journal], 2015, no. 8. DOI: 10.7463/0815.0793667 Available at: http://technomag.bmstu.ru/en/doc/793667.html

[12] Gorbatenko S.A., Makashov E.M., Polushkin Yu.F., Sheftel’ A.V. Mekhanika poleta: Spravochnik [Mechanics of Flight. Handbook]. Moscow, Mashinostroenie Publ., 1989. 420 p.

[13] Zhevnin A.A., Krishchenko A.P., Glushko Yu.V. Controllability and observability of nonlinear systems and synthesis of terminal control. Dokl. AN SSSR, 1982, vol. 266, no. 4, pp. 807-811 (in Russ.).

[14] Krasnoshchechenko V.I., Krishchenko A.P. Nelineynye sistemy: geometricheskie metody analiza i sinteza [Nonlinear systems: geometrical methods of analysis and synthesis]. Moscow, MGTU im. N.E. Baumana Publ., 2005. 520 p.

[15] Byrd R.H., Gilbert J.C., Nocedal J. A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming. Mathematical Programming, 2000, vol. 89, no. 1, pp. 149-185.

[16] Byrd R.H., Hribar M.E., Nocedal J. An Interior Point Algorithm for Large-Scale Nonlinear Programming. SIAM Journal on Optimization, 1999, vol. 9, no. 4, pp. 877-900.

[17] Waltz R.A., Morales J.L., Nocedal J., Orban D. An interior algorithm for nonlinear optimization that combines line search and trust region steps. Mathematical Programming, 2006, vol. 107, no. 3, pp. 391-408.