|

Tangible Power Loss Dwindling by Canadian Yukon Cougar Optimization Algorithm

Authors: Kanagasabai L. Published: 01.11.2022
Published in issue: #5(104)/2022  
DOI: 10.18698/1812-3368-2022-5-16-30

 
Category: Mathematics and Mechanics | Chapter: Computational Mathematics  
Keywords: optimal reactive power, transmission loss, Canadian Yukon Cougar Optimization Algorithm

Abstract

In this paper Canadian Yukon Cougar Optimization Algorithm is applied to solve the power loss lessening problem. Natural deeds of Canadian Yukon Cougar are imitated to model the Canadian Yukon Cougar optimization algorithm. Both male and female Canadian Yukon Cougar switch their positions with reference to the conditions. In the initial population superiority and Migrant classification are done. For each Canadian Yukon Cougar fitness value computed. For superiority matured male Canadian Yukon Cougar fight with other male Canadian Yukon Cougars. Succeeded male will be dominant and defeated male Canadian Yukon Cougars will become as Migrant Canadian Yukon Cougars. In Canadian Yukon Cougar population balance will be there at end of iterations, the amount of existing Canadian Yukon Cougar will be controlled. With reference to the Utmost allowed number of every gender in Migrant Canadian Yukon Cougar; the smallest amount fitness value possessed by Migrant Canadian Yukon Cougar will be removed. Rightfulness of the Canadian Yukon Cougar Optimization Algorithm is corroborated in IEEE 30 bus system (with and devoid of L-index). Actual power loss lessening is reached. Proportion of actual power loss lessening is augmented

Please cite this article as:

Kanagasabai L. Tangible power loss dwindling by Canadian Yukon Cougar Optimization Algorithm. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2022, no. 5 (104), pp. 16--30. DOI: https://doi.org/10.18698/1812-3368-2022-5-16-30

References

[1] Carpentier J. Contribution a l’etude du dispatching economique. Bull. de la Societe Francaise des Electriciens, 1962, vol. 3, no. 32, pp. 431--447.

[2] Dommel H.W., Tinney W.F. Optimal power flow solutions. IEEE Trans. Power Appar. Syst., 1968, vol. PAS-87, iss. 10, pp. 1866--1876. DOI: https://doi.org/10.1109/TPAS.1968.292150

[3] Takapoui R., Mohle N., Boyd S., et al. A simple effective heuristic for embedded mixed-integer quadratic programming. Int. J. Control., 2020, vol. 93, iss. 1, pp. 2--12. DOI: https://doi.org/10.1080/00207179.2017.1316016

[4] Abaci K., Yamacli V. Optimal reactive-power dispatch using differential search algorithm. Electr. Eng., 2017, vol. 99, no. 1, pp. 213--225. DOI: https://doi.org/10.1007/s00202-016-0410-5

[5] Pulluri H., Naresh R., Sharma V. An enhanced self-adaptive differential evolution based solution methodology for multiobjective optimal power flow. Appl. Soft Comput., 2017, vol. 54, pp. 229--245. DOI: https://doi.org/10.1016/j.asoc.2017.01.030

[6] Heidari A., Abbaspour R.A., Jordehi A.R. Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems. Appl. Soft Comput., 2017, vol. 57, pp. 657--671. DOI: https://doi.org/10.1016/j.asoc.2017.04.048

[7] Keerio M.U., Ali A., Saleem M., et al. Multi-objective optimal reactive power dispatch considering probabilistic load demand along with wind and solar power integration. 2nd SPIES, 2020, pp. 502--507. DOI: https://doi.org/10.1109/SPIES48661.2020.9243016

[8] Roy R., Das T., Mandal K.K. Optimal reactive power dispatch for voltage security using JAYA algorithm. ICCDW, 2020. DOI: https://doi.org/10.1109/ICCDW45521.2020.9318700

[9] Mugemanyi S., Qu Z., Rugema F.X., et al. Optimal reactive power dispatch using chaotic bat algorithm. IEEE Access, 2020, vol. 8, pp. 65830--65867. DOI: https://doi.org/10.1109/ACCESS.2020.2982988

[10] Sahli Z., Hamouda A., Bekrar A., et al. Hybrid PSO-tabu search for the optimal reactive power dispatch problem. Proc. IECON, 2014, pp. 3536--3542.

[11] Mouassa S., Bouktir T., Salhi A. Ant lion optimizer for solving optimal reactive power dispatch problem in power systems. Eng. Sci. Technol., 2017, vol. 20, iss. 3, pp. 885--895. DOI: https://doi.org/10.1016/j.jestch.2017.03.006

[12] Mandal B., Roy P.K. Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization. Int. J. Electr. Power Energy Syst., 2013, vol. 53, pp. 123--134. DOI: https://doi.org/10.1016/j.ijepes.2013.04.011

[13] Tran H.V., Pham T.V., Pham L.H., et al. Finding optimal reactive power dispatch solutions by using a novel improved stochastic fractal search optimization algorithm. TELKOMNIKA, 2019, vol. 17, no. 5, pp. 2517--2526. DOI: http://doi.org/10.12928/telkomnika.v17i5.10767

[14] Polprasert J., Ongsakul W., Dieu V.N. Optimal reactive power dispatch using improved pseudo-gradient search particle swarm optimization. Electr. Power Compon. Syst., 2016, vol. 44, iss. 5, pp. 518--532. DOI: https://doi.org/10.1080/15325008.2015.1112449

[15] Duong T.L., Duong M.Q., Phan V.D., et al. Optimal reactive power flow for large-scale power systems using an effective metaheuristic algorithm. J. Electr. Comput. Eng., 2020, vol. 2020, art. 6382507. DOI: https://doi.org/10.1155/2020/6382507

[16] Muhammad Y., Khan R., Raja M.A.Z., et al. Solution of optimal reactive power dispatch with FACTS devices: a survey. Energy Rep., 2020, vol. 6, pp. 2211--2229. DOI: https://doi.org/10.1016/j.egyr.2020.07.030

[17] Omelchenko I.N., Zakharov M.N., Lyakhovich D.G., et al. Organization of logistic systems of scientific productions: scientific research work of the master’s student and evaluation of its results. Management Systems for the Full Life Cycle of High-Tech Products in Mechanical Engineering: New Sources of Growth. Proc. III All-Russ. Sci. Pract. Conf., 2020, pp. 252--256 (in Russ.). DOI: https://doi.org/10.18334/9785912923258.252-256

[18] Omelchenko I.N., Lyakhovich D.G., Alexandrov A.A., et al. Problems and organizational and technical solutions of processing management problems of material and technical resources in a design-oriented organization. Management Systems for the Full Life Cycle of High-Tech Products in Mechanical Engineering: New Sources of Growth. Proc. III All-Russ. Sci. Pract. Conf., 2020, pp. 257--260 (in Russ.). DOI: https://doi.org/10.18334/9785912923258.257-260

[19] Kanagasabai L. Solving optimal reactive power dispatch problem by population distinction and pandemic virus algorithms. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2021, no. 5 (98), pp. 33--48. DOI: https://doi.org/10.18698/1812-3368-2021-5-33-48

[20] Deng C., Dong X., Yang Y., et al. Differential evolution with novel local search operation for large scale optimization problems. In: Tan Y., Shi Y., Buarque F., Gel-bukh A., Das S., Engelbrecht A. (eds). Advances in Swarm and Computational Intelligence. ICSI 2015. Lecture Notes in Computer Science, vol. 9140. Cham, Springer, 2015, pp. 317--325. DOI: https://doi.org/10.1007/978-3-319-20466-6_34

[21] Dhahri H., Alimi A.M. Opposition-based differential evolution for beta basis function neural network. IEEE Congress on Evolutionary Computation, 2010. DOI: https://doi.org/10.1109/CEC.2010.5585970

[22] Dhahri H., Alimi A.M., Abraham A. Hierarchical particle swarm optimization for the design of beta basis function neural network. In: Intelligent informatics. Springer, 2013, pp. 193--205.

[23] Illinois Center for a Smarter Electric Grid (ICSEG). Available at: https://icseg.iti.illinois.edu (accessed: 25.02.2019).

[24] Hussain A.N., Abdullah A.A., Neda O.M. Modified particle swarm optimization for solution of reactive power dispatch. Res. J. Appl. Sci. Eng. Technol., 2018, vol. 15, iss. 8, pp. 316--327. DOI: http://dx.doi.org/10.19026/rjaset.15.5917

[25] Pandya S., Roy R. Particle swarm optimization based optimal reactive power dispatch. IEEE ICECCT, 2015. DOI: https://doi.org/10.1109/ICECCT.2015.7225981

[26] Dai C., Chen W., Zhu Y., et al. Seeker optimization algorithm for optimal reactive power dispatch. IEEE Trans. Power Syst., 2009, vol. 24, iss. 3, pp. 1218--1231. DOI: https://doi.org/10.1109/TPWRS.2009.2021226

[27] Subbaraj P., Rajnarayan P.N. Optimal reactive power dispatch using self-adaptive real coded Genetic algorithm. Electr. Power Syst. Res., 2009, vol. 79, iss. 2, pp. 374--381. DOI: https://doi.org/10.1016/j.epsr.2008.07.008

[28] Omelchenko I.N., Lyakhovich D.G., Aleksandrov A.A., et al. Development of a design algorithm for the logistics system of product distribution of the mechanical engineering enterprise. Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2020, no. 3 (132), pp. 62--69. DOI: http://dx.doi.org/10.18698/0236-3941-2020-3-62-69