Numerical Simulation of a Thermal Shock in an Elastic Body Considering Non-Locality Effects in the Medium
Authors: Savelyeva I.Yu. | Published: 08.06.2020 |
Published in issue: #3(90)/2020 | |
DOI: 10.18698/1812-3368-2020-3-20-29 | |
Category: Mathematics and Mechanics | Chapter: Computational Mathematics | |
Keywords: thermal shock, mathematical simulation, non-local deformation, thermal conductivity, dynamic stress |
Creating mathematical simulations that allow material behaviour to be described for a wide range of variable external effects is an important stage of developing and utilising new structurally sensitive materials. At present, there exist several approaches to analytical simulation of materials featuring a complex internal structure. We used methods of generalized thermomechanics to derive constitutive equations for a mathematical model describing the temperature and dynamic stress distributions for the case of a thermal shock on the surface of an elastic body, taking spatial non-locality into account. We employed a medium model featuring internal state parameters to describe the process of non-steady-state thermal conductivity. The model proposed makes it possible to account for the spatial and temporal non-locality effects found in structurally sensitive materials; this may be used in further investigations of temperature fields and stresses occurring in structural elements as a result of various external effects. We propose an algorithm for developing numerical solutions based on a Galerkin finite element method. The paper presents temperature field and stress computations for a one-dimensional problem and analyses the effect the non-locality parameters have on these solutions
The study was supported by RFBR (RFBR project no. 18-38-20108)
References
[1] Gopalakrishnan S., Narendar S. Wave propagation in nanostructures. Nonlocal Continuum Mechanics Formulations. NanoScience and Technology. Cham, Springer, 2013. DOI: https://doi.org/10.1007/978-3-319-01032-8
[2] Ibragimov I.M., Kovshov A.N., Nazarov Yu.F. Osnovy komp’yuternogo modelirovaniya nanosistem [Fundamentals of nanosystem computer simulation]. St. Petersburg, Lan Publ., 2010.
[3] Eringen A.C. Nonlocal continuum field theories. New York, Springer, 2002.
[4] Krivtsov A.M. Deformirovanie i razrushenie tverdykh tel s mikrostrukturoy [Deformation and fracture of solids with microstructure]. Moscow, FIZMATLIT Publ., 2007.
[5] Zarubin V.S., Kuvyrkin G.N., Savel’eva I.Yu. Evaluation of the linear thermal expansion coefficient of composites with disperse anisotropic inclusions by the self-consistency method. Mech. Compos. Mater., 2016, vol. 52, iss. 2, pp. 143--154. DOI: https://doi.org/10.1007/s11029-016-9567-2
[6] Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Yu. Thermal conductivity of the textured composite with anisotropic lamellar inclusions. Kompozity i nanostruktury [Composites and Nanostructures], 2015, vol. 7, no. 1, pp. 1--13 (in Russ.).
[7] Rushchitskiy Ya.Ya. Elementy teorii smesi [Elements of mixture theory]. Kiev, Naukova dumka Publ., 1991.
[8] Bakhvalov N.S., Panasenko G.P. Osrednenie protsessov v periodicheskikh sredakh: matematicheskie zadachi mekhaniki kompozitsionnykh materialov [Averaging of processes in batch media: mathematical problems of composite materials mechanics]. Moscow, Nauka Publ., 1984.
[9] Karlicic D., Murmu T., Adhikari S., et al. Nonlocal structural mechanics. Wiley, 2016.
[10] Savelieva I.Yu. Influence of medium nonlocality on distribution of temperature and stresses in elastic body under pulsed heating. Mech. Solids, 2018, vol. 53, iss. 3, pp. 277--283. DOI: https://doi.org/10.3103/S0025654418070063
[11] Zarubin V.S., Stankevich I.V. Raschet teplonapryazhennykh konstruktsiy [Calculation of heat-stressed structures]. Moscow, Mashinostroenie Publ., 2005.
[12] Gribanov V.F., Panichkin N.G. Svyaznye i dinamicheskie zadachi termouprugosti [Connected and dynamic problems of thermoelasticity]. Moscow, Mashinostroenie Publ., 1984.
[13] Zarubin V.S., Kuvyrkin G.N. Matematicheskie modeli mekhaniki i elektrodinamiki sploshnoy sredy [Mathematical models of continuous medium mechanics and electrodynamics]. Moscow, BMSTU Publ., 2008.
[14] Zweben C.H., Beaumont P. Comprehensive composite materials II. Elsevier, 2017.
[15] Zienkiewicz O.C., Taylor R.L. The finite element method. Vol. 1. The basis. Butterworth-Heinemann, 2000.