|

Solution of terminal tasks for second-order systems under state constraints

Authors: Kasatkina T.S. Published: 16.02.2016
Published in issue: #1(64)/2016  
DOI: 10.18698/1812-3368-2016-1-17-26

 
Category: Mathematics and Mechanics | Chapter: Differential Equations and Mathematical Physics  
Keywords: terminal control, phase curve, state constraints

The solution of terminal tasks with state constraints for a second-order affine systems of regular canonical form is suggested. The solution is to construct the function that defines a phase curve satisfying given boundary conditions. The function correction algorithm is described in such a way that the corresponding system trajectory should satisfy state constraints. The task of terminal control under state constrants for a system, describing oscillations of mathematical pendulum, is solved by using the suggested method.

References

[1] Arutyunov A.V., Aseev S.M. The Degeneracy Phenomenon in Optimal Control Problems with State Constraints. In Proceedings of 36th IEEE Conference on Decision and Control, 1997, vol. 1, pp. 300-304.

[2] Zeidan V. Second-order Conditions for Optimal Control Problems with Mixed State-Control Constraints. Proceedings of the 32nd on Decision and Control. San Antonio, Texas, 1993, pp. 3800-3806.

[3] Pales Z., Zeidan V. Strong Local Optimality Conditions for Control Problems with Mixed State-Control Constraints. Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas, USA, Dec. 2002, pp. 4738-4744.

[4] Huifang W., Yangzhou C., Soueres P. A Geometric Algorithm to Compute Time-Optimal Trajectories for a Bidirectional Steered Robot. IEEE Transaction on Robotics, 2009, vol. 25, iss. 2, pp. 399-413.

[5] Velagic J., Delic E. Calculation of optimal trajectories of mobile robot based on minimal curving radius and task free based approach. 13th International Symposium on Information, Communication and Automation Technologies. Sarajevo, 27-29 Oct., 2011, pp. 1-8.

[6] Patil D.U., Chakraborty D. Computation of Optimal Feedback Control Using Groebner Basis. IEEE Transaction on Automatic Control, 2014, vol. 59, iss. 8, pp. 2271-2276.

[7] Fetisov D.A. Solving terminal control problems for affine systems. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science & Education of the Bauman MSTU. Electronic Journal], 2013. no. 10, pp. 123-137. Available at: http://technomag.bmstu.ru/doc/604151.html DOI: 10.7463/1013.0604151

[8] Fetisov D.A. A method for solving terminal control problems for affine systems. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science & Education of the Bauman MSTU. Electronic Journal], 2013. no. 11, pp.383-401. Available at: http://technomag.bmstu.ru/doc/622543.html DOI: 10.7463/1113.0622543

[9] Fetisov D.A. Solving terminal problems for multidimensional affine systems based on transformation to a quasicanonical form. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2014, no. 5, pp. 16-31 (in Russ.).

[10] Fetisov D.A. Sufficient Controllability Condition for Multidimensional Affine Systems. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science & Education of the Bauman MSTU. Electronic Journal], 2014, no. 11, pp. 281-293. Available at: http://technomag.bmstu.ru/doc/737321.html DOI: 10.7463/1114.0737321

[11] Fetisov D.A. Solution of Terminal Problems for Affine Systems in Quasicanonical Form on the Basis of Orbital Linearization. Differential Equations, 2014, vol. 50, no. 12, pp. 1664-1672. DOI: 10.1134/S0012266114120106

[12] Chetverikov V.N. The covering method for the solution of terminal control problem. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science & Education of the Bauman MSTU. Electronic Journal], 2014, no. 2, pp. 125-143. Available at: http://technomag.bmstu.ru/doc/699730.html DOI: 10.7463/0214.0699730

[13] Belinskaya Yu.S., Chetverikov V.N. Covering Method for Terminal Control with Regard of Constraints. Differential Equations, 2014, vol. 50, no. 12, pp. 1632-1642. DOI: 10.1134/S0012266114120076

[14] Kasatkina T.S., Krishchenko A.P. Solving the Terminal Problem for the Third Order Systems Using the Orbital Linearization. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science & Education of the Bauman MSTU. Electronic Journal], 2014, no. 12, pp. 781-797. Available at: http://technomag.bmstu.ru/doc/742829.html DOI: 10.7463/1214.0742829

[15] Krishchenko A.P. Parametric Sets of Integral Equations Solutions. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2014, no. 3, pp. 3-10 (in Russ.).

[16] Kasatkina T.S., Krishchenko A.P. Variations Method to Solve Terminal Problems for the Second Order Systems of Canonical Form with State Constraints. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science & Education of the Bauman MSTU. Electronic Journal], 2015, no. 5, pp. 266-280. Available at: http://technomag.bmstu.ru/doc/766238.html DOI: 10.7463/0515.076623

[17] Krasnoshchechenko V.I., Krishchenko A.P. Nelineynye sistemy: geometricheskie metody analiza i sinteza [Nonlinear systems: geometrical methods of analysis and synthesis]. Moscow, MGTU im. N.E. Baumana Publ., 2005. 520 p.