|

On the input-to-state stabilization of affine systems

Authors: Kavinov A.V. Published: 15.06.2016
Published in issue: #3(66)/2016  
DOI: 10.18698/1812-3368-2016-3-27-41

 
Category: Mathematics and Mechanics | Chapter: Differential Equations and Mathematical Physics  
Keywords: input-to-state stabilization, stabilization in the presence of disturbances, affine system, transformation to the equivalent canonical form, Lyapunov function, system with control

The article examines the possibility of global stabilization of affine systems of arbitrary dimension with the scalar control and scalar disturbance. In this case the corresponding systems without disturbances are equivalent to regular systems of a canonical form. We obtain easily verifiable conditions implying that Lyapunov function built on the basis of the regular canonical form for the system with control is Lyapunov function for the system with disturbances. We provide the research with the results of numerical modeling of the stabilization process for three-dimensional affine systems with disturbances.

References

[1] Krstic M., Deng H. Stabilization of Nonlinear Uncertain Systems. London, Springer-Verlag, 1998. 193 p.

[2] Sontag E.D. A "universal" construction of Artstein’s theorem on nonlinear stabilization. Systems Control Lett., 1989, vol. 13(2), pp. 117-123.

[3] Sontag E.D., Wang Y. On characterizations of the input-to-state stability property. Systems Control Lett., 1995, vol. 24(5), pp. 351-359.

[4] Dashkovskiy S.N., Efimov D.V., Sontag E.D. Input to state stability and allied system properties. Avtomatika i telemehanika [Automation and Remote Control], 2011, vol. 72, iss. 8, pp. 1579-1614. DOI: 10.1134/S0005117911080017

[5] Sontag E.D. Input to state stability: basic concepts and results. Nonlinear and optimal control theory, 2008, vol. 1932, pp. 163-220.

[6] Sontag E.D. Further facts about input to state stabilization. IEEE Trans. Automat. Control, 1990, vol. 35(4), pp. 473-476.

[7] Freeman R.A., Kokotovic P.V. Robust nonlinear control design. Boston, Birkhauser, 1996. 257 p.

[8] Efimov D.V., Fradkov A.L. Input-to-output stabilization of nonlinear systems via backstepping. Int. J. Robust Nonlinear Control, 2009, vol. 19(6), pp. 613-633.

[9] Efimov D.V., Fradkov A.L. Adaptive input-to-output stabilization of nonlinear systems. Int. J. Adaptive Control and Signal Processing, 2008, vol. 22(10), pp. 949-967.

[10] Krstic M., Li Z.-H. Inverse optimal design of input-to-state stabilizing nonlinear controllers. IEEE Trans. Automat. Control, 1998, vol. 43(3), pp. 336-350.

[11] Byrnes C.I., Isidori A., Willems J.C. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Trans. Automat. Control, 1991, vol. 36(11), pp. 1228-1240.

[12] Liberzon D., Sontag E.D., Wang Y. On integral input to state stabilization. Proc. Amer. Control Conf, San Diego, USA. June 1999, pp. 1598-1602.

[13] Krasnoshchechenko V.I., Krishchenko A.P. Nelineynye sistemy: geometricheskie metody analiza i sinteza [Nonlinear systems: geometric methods of analysis and synthesis]. Мoscow, MGTU im. N.E. Baumana Publ., 2005. 520 p.

[14] Isidori A. Nonlinear control systems. London, Springer Verlag, 1995. 550 p.

[15] Khalil H.K. Nonlinear systems. N.Y., Prentice-Hall, 1996. 750 p.

[16] Kavinov A.V. On the Problem of 2d Affine Systems Input to State Stabilization. Matematika i matematicheskoe modelirovanie. MGTU im. N.E. Baumana. Elektron. zhurnal [Mathematics & Mathematical Modelling. Electronic Journal of the Bauman MSTU], 2015, no. 3, pp. 27-38. DOI: 10.7463/mathm.0315.0789645 Available at: http://mathmjournal.ru/en/doc/789645.html

[17] Krstic M., Kanellakopoulos I., Kokotovic P. Nonlinear and Adaptive Control Design. N.Y., John Wiley & Sons, Inc., 1995. 576 p.