On Calculating a Pseudoinverse Matrix. General Case
Authors: Zubov N.E., Ryabchenko V.N. | Published: 26.01.2018 |
Published in issue: #1(76)/2018 | |
DOI: 10.18698/1812-3368-2018-1-16-25 | |
Category: Mathematics and Mechanics | Chapter: Differential Equations and Mathematical Physics | |
Keywords: inverse matrix, pseudoinverse matrix, pseudoinverse matrix calculation formulae |
The study proposes a universal approach for analytical calculation of a pseudoinverse matrix for both rectangular, and square matrices. According to this approach, we obtained a formula that, in fact, relates the operation of inversion of a nondegenerate block matrix composed of a given matrix and its left and right zero divisors of maximal rank, to a pseudoinversion of this matrix. The paper gives the theorem and its proof. Within the research we investigate the main properties of the chosen formula and formulate the corollaries that have practical value and simplify the computation of the pseudoinverse matrix. Moreover, we consider semiorthogonal matrix zero divisors and matrices that do not have this property. The examples given are illustrative and are related to inversion of matrix of both square, and rectangular types of low rank
References
[1] Voevodin V.V., Kuznetsov Yu.A. Matritsy i vychisleniya [Matrixes and calculations]. Moscow, Nauka Publ., 1984. 320 p.
[2] Bernstein D.S. Matrix mathematics. Princeton University Press, 2009. 1184 p.
[3] Moore E.H. On the reciprocal of the general algebraic matrix. Bulletin of the American Mathematical Society, 1920, vol. 26, pp. 394–395.
[4] Penrose R. A generalized inverse for matrices. Proc. of the Cambridge Philosophical Society, 1995, vol. 51, no. 3, pp. 406–413.
[5] Albert A. Regression and the Moore — Penrose pseudoinverse. New York, London, Academic Press, 1972. 179 p.
[6] Misrikhanov M.Sh., Ryabchenko V.N. Pole placement in large dynamical systems with many inputs and outputs. Doklady Mathematics, 2011, vol. 84, iss. 1, pp. 591–593. DOI: 10.1134/S0005117907120041
[7] Zubov N.E., Mikrin E.A., Misrikhanov M.Sh., Ryabchenko V.N. Synthesis of decoupling laws for attitude stabilization of a spacecraft. Journal of Computer and Systems Sciences International, 2012, vol. 51, iss. 1, pp. 80–96. DOI: 10.1134/S1064230711060189
[8] Zubov N.E., Mikrin E.A., Misrikhanov M.Sh., Ryabchenko V.N. Modification of the exact pole placement method and its application for the control of spacecraft motion. Journal of Computer and Systems Sciences International, 2013, vol. 52, iss. 2, pp. 279–292. DOI: 10.1134/S1064230713020135
[9] Zubov N.E., Zybin E.Yu., Mikrin E.A., Misrikhanov M.Sh., Proletarskii A.V., Ryabchenko V.N. Output control of a spacecraft motion spectrum. Journal of Computer and Systems Sciences International, 2014, vol. 53, iss. 4, pp. 576–586. DOI: 10.1134/S1064230714040170
[10] Zubov N.E., Mikrin E.A., Ryabchenko V.N. Output control of the longitudinal motion of a flying vehicle. Journal of Computer and Systems Sciences International, 2015, vol. 54, iss. 5, pp. 825–837. DOI: 10.1134/S1064230715040140
[11] Zubov N.E., Mikrin E.A., Oleynik A.S., Ryabchenko V.N., Efanov D.E. The spacecraft angular velocity estimation in the orbital stabilization mode by the results of the local vertical sensor measurements. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2014, no. 5, pp. 3–15 (in Russ.).
[12] Zubov N.E., Mikrin E.A., Ryabchenko V.N. Matrichnye metody v teorii i praktike sistem avtomaticheskogo upravleniya letatelnymi apparatami [Matrix methods in theory and practice of aircraft automatic control]. Moscow, Bauman MSTU Publ., 2016. 666 p.