Shape Control of the Technological Ion Source Beam for High-Precision Surface Treatment
Authors: Dukhopel’nikov D.V., Vorob’ev E.V., Ivakhnenko S.G., Kirillov D.V. | Published: 24.05.2017 |
Published in issue: #3(72)/2017 | |
DOI: 10.18698/1812-3368-2017-3-24-36 | |
Category: Mathematics and Mechanics | Chapter: Mechanics of Liquid, Gas and Plasma | |
Keywords: accelerator with anode layer, Hall current accelerator, ion beam focusing, ion sputtering, anode layer, Lorentz force |
The study shows that the effect of azimuthal deflection of ions in an accelerator beam with a closed azimuthal electron drift can be used to control the shape of the ion beam and the profile of the ion current density distribution along the radius. By varying the distribution profile of the magnetic field along the axis of the accelerating channel, it is possible to control the ion current density profile, giving it both an annular shape and a shape close to the Gaussian distribution. We propose a criterion for calculating the magnetic system providing the best focusing of the ion beam. Findings of the research show that from the known distribution of the magnetic field with the optimal focusing of the ion beam, one can estimate the position of the ionization zone in the accelerating channel.
References
[1] Zhurin V.V. Industrial ion sources: Broadbeam gridless ion source technology. Wiley, 2011. 326 p.
[2] Ghigo M., Canestrari R., Spiga D., Novi A. Correction of high spatial frequency errors on optical surfaces by means of ion beam figuring. Proc. SPIE. 6671. Optical Manufacturing and Testing VII, 2007, vol. 6671, pp. 667114-1-667114-10. DOI: 10.1117/12.734273 Available at: http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1321975
[3] Ghigo M., Cornelli S., Canestrari R., et al. Development of a large ion beam figuring facility for correction of optics up to 1.7 m diameter. Proc. SPIE. 7426. Optical Manufacturing and Testing VIII, 2009, vol. 7426, pp. 74611-1-74611-8. DOI: 10.1117/12.826433 Available at: http://proceedings.spiedigitallibrary.org/proceeding.aspx?artideid=785644&resultClick=1
[4] Arnold T., Pietag F. Ion beam figuring machine for ultra-precision silicon spheres correction. Precision Engineering, 2015, vol. 41, pp. 119-125. DOI: 10.1016/j.precisioneng.2015.03.009 Available at: http://www.sciencedirect.com/science/article/pii/S0141635915000513
[5] Morozov A.I. Vvedenie v plazmodinamiku [Introduction to plasmodynamics]. Moscow, Fizmatlit Publ., 2008. 616 p.
[6] Grishin S.D., Leskov L.V. Elektricheskie raketnye dvigateli kosmicheskikh apparatov [Spacecraft electrical jet propulsion]. Moscow, Mashinostroenie Publ., 1989. 216 p.
[7] Arkhipov A.S., Kim V.P., Sidorenko E.K. Statsionarnye dvigateli Morozova [Morozov stationary engines]. Moscow, MAI Publ., 2012. 292 p.
[8] Hofer R.R. Development and characterization of high-efficiency, high-specific impulse xenon Hall thrusters. Ph.D. dissertation, Dept. of Aerospace Engineering, University of Michigan, 2004.
[9] Marakhtanov M.K., Dukhopel’nikov D.V., Ivakhnenko S.G., Vorob’yev E.V. Experimental demonstration of azimuthal ion deviation effect in engines with anode layer. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana [Science and Education: Scientific Publication of BMSTU], 2012, no. 11, pp. 233-238 (in Russ.). DOI: 10.7463/1112.0483882 Available at: http://technomag.bmstu.ru/en/doc/483882.html
[10] Marakhtanov M.K., Dukhopel’nikov D.V., Ivakhnenko S.G., Vorob’yev E.V., Krylov V.I. The influence of the azimuthal deviation ion plasma jet on the traction motor efficiency with anode layer. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana [Science and Education: Scientific Publication of BMSTU], 2012, no. 12 (in Russ.). DOI: 10.7463/1212.0483944 Available at: http://technomag.bmstu.ru/en/doc/483944.html
[11] Vorob’yev E.V., Dukhopel’nikov D.V., Ivakhnenko S.G., Marakhtanov M.K. Loss of thrust in engines with anode layer due to ion twirling. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2011, Spec. iss. "Ion plasma technologies", pp. 58-63 (in Russ.).
[12] Dukhopel’nikov D.V., Marakhtanov M.K. Sposob elektromagnitnoy fokusirovki ionnogo puchka v uskoritele plazmy s azimutal’nym dreyfom elektronov [Electromagnetic focusing method of ion beam in plasma accelerator with azimuth electron drift]. Patent RU 2465749. Publ. 2012 (in Russ.). Available at: http://www.freepatent.ru/patents/2465749 (accessed 15.01.2017).
[13] Vorob’yev E.V., Dukhopel’nikov D.V., Ivakhnenko S.G., Zhukov A.V., Kirillov D.V., Marakhtanov M.K. Hall accelerator with a focused beam for nanoscale processing of large-sized mirrors of optical telescopes. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2011, Spec. iss. "Ion plasma technologies", pp. 35-41 (in Russ.).
[14] Girka O., Bizyukov I., Sereda K., Bizyukov A., Gutkin M., Sleptsov V. Compact steady-state and high-flux Falcon ion source for tests of plasma-facing materials. Review of Scientific Instruments, 2012, vol. 83. DOI: 10.1063/1.4740519 Available at: http://aip.scitation.org/doi/10.1063/1.4740519
[15] Dukhopel’nikov D.V., Ivakhnenko S.G. Influence of azimuthal deflection of ions on the beam shape of the engine with anode layer. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana [Science and Education: Scientific Publication of BMSTU], 2012, no. 10 (in Russ.). DOI: 10.7463/1012.0483832 Available at: http://technomag.bmstu.ru/en/doc/483832.html
[16] Matthew T. Domonkos, Alec D. Gallimore, Sven G. Bilen. A Hall probe diagnostic for low density plasma accelerators. Rev. Sci. Instrum., 1998, vol. 69, no. 6, pp. 2546-2549. DOI: 10.1063/1.1148956 Available at: http://aip.scitation.org/doi/10.1063/1.1148956
[17] Dukhopel’nikov D.V. Measurement of magnetic field and Hall current modeling in discharge of magnetron sputtering system. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana [Science and Education: Scientific Publication of BMSTU], 2015, no. 10 (in Russ.). DOI: 10.7463/1015.0818660 Available at: http://technomag.bmstu.ru/en/doc/818660.html
[18] Rossnagel S.M., Kaufman H.R. Induced drift currents in circular planar magnetrons. Journal of Vacuum Science & Technology A: Vacuum Surfaces and Films, 1987, vol. 5, no. 1, pp. 88-91. DOI: 10.1116/1.574822 Available at: http://avs.scitation.org/doi/10.1116/1.574822