Variational Notation of a Thermal Breakdown Model for a Solid Dielectric with Temperature-Dependent Thermal Conductivity
Authors: Zarubin V.S. | Published: 27.09.2017 |
Published in issue: #5(74)/2017 | |
DOI: 10.18698/1812-3368-2017-5-4-18 | |
Category: Mathematics and Mechanics | Chapter: Mathematical Physics | |
Keywords: dielectric, thermal breakdown, mathematical model, functional, thermal conductivity potential |
We constructed a differential notation of a mathematical model describing a steady-state heat energy transfer process in a planar or circular cylindrical dielectric layer for the case of alternating voltage. Thermal conductivity of a dielectric material depends on temperature. Using a variational formulation of the non-linear steady-state thermal conductivity problem, we transform this model into variational notation containing a functional defined on a set of acceptable distributions of the thermal conductivity potential in the dielectric layer. Investigating stationary points on this functional makes it possible to find the combination of the parameters determining whether a thermal breakdown occurs in the dielectric. The paper presents an example of stationary point analysis and an estimation of the cumulative error allowing the approximation function to be selected so as to lie as close as possible to the limit thermal conductivity potential distribution prior to the thermal breakdown in the dielectric
References
[1] Skanavi G.I. Fizika dielektrikov (oblast' sil'nykh poley) [Dielectric physics (high field region)]. Moscow, Fizmatgiz Publ., 1958. 908 p.
[2] Borisova M.E., Koykov S.N. Fizika dielektrikov [Dielectric physics]. Leningrad, Izd-vo Leningradskogo universiteta Publ., 1979. 240 p.
[3] Vorob'yev G.A., Pokholkov Yu.P., Korolev Yu.D., Merkulov V.I. Fizika dielektrikov (oblast' sil'nykh poley) [Dielectric physics (high field region)]. Tomsk, TPU Publ., 2003. 244 p.
[4] Proboy dielektrikov [Dielectric breakdown]. Websor.ru: website. Available at: https://www.websor.ru/proboi_dielektricov.html (accessed: 20.11.2016).
[5] Tareev B.M. Fizika dielektricheskikh materialov [Dielectric physics]. Moscow, Energoatomizdat Publ., 1982. 320 p.
[6] Sazhin B.I., ed. Elektricheskie svoystva polimerov [Polymer electrical properties]. Leningrad, Khimiya Publ., 1986. 224 p.
[7] Trofimov N.N., Kanovich M.Z., Kartashov E.M., Natrusov V.I., Ponomarenko A.T., Shevchenko V.G., Sokolov V.I., Simonov-Emel
[8] Glagolev K.V., Morozov A.N. Fizicheskaya termodinamika [Physical thermodynamics]. Moscow, Bauman MSTU Publ., 2007. 272 p.
[9] Zarubin V.S. Modelirovanie [Simulation]. Moscow, Akademiya Publ. Center, 2013. 336 p.
[10] Zarubin V.S., Kuvyrkin G.N. Special features of mathematical modeling of technical instruments. Matematicheskoe modelirovanie i chislennye metody [Mathematical Modeling and Computational Methods], 2014, no. 1, pp. 5–17 (in Russ.). DOI: 10.18698/2309-3684-2014-1-517
[11] Samarskiy A.A., Galaktionov V.A., Kurdyumov S.P., Mikhaylov A.P. Rezhimy s obostreniem v zadachakh dlya kvazilineynykh parabolicheskikh uravneniy [Blow-up regimes in problems for quasilinear parabolic equations]. Moscow, Nauka Publ., 1987. 480 p.
[12] Zarubin V.S., Kuvyrkin G.N. Mathematical modeling of thermomechanical processes under intense thermal effect. High Temperature, 2003, vol. 41, iss. 2, pp. 257–265. DOI: 10.1023/A:1023390021091
[13] Van'ko V.I., Ermoshina O.V., Kuvyrkin G.N. Variatsionnoe ischislenie i optimal'noe upravlenie [Variational calculus and optimal control]. Moscow, Bauman MSTU Publ., 2001. 488 p.
[14] Zarubin V.S. Inzhenernye metody resheniya zadach teploprovodnosti [Engineering methods for solving thermal conductivity problems]. Moscow, Energoatomizdat Publ., 1983. 328 p.
[15] Zarubin V.S., Ivanova E.E., Kuvyrkin G.N. Zarubin V.S., Ivanova E.E., Kuvyrkin G.N. Integral‘noe ischislenie funktsiy odnogo peremennogo [Integral calculus of one-variable function]. Moscow, Bauman MSTU Publ., 2006. 528 p.
[16] Zarubin V.S., Selivanov V.V. Variatsionnye i chislennye metody mekhaniki sploshnoy sredy [Variational and numerical methods of solid state mechanics]. Moscow, Bauman MSTU Publ., 1993. 360 p.
[17] Zarubin V.S., Stankevich I.V. Raschet teplonapryazhennykh konstruktsiy [Heat-stressed construction calculation]. Moscow, Mashinostroenie Publ., 2005. 352 p.
[18] Attetkov A.V., Zarubin V.S., Kanatnikov A.N. Vvedenie v metody optimizatsii [Introduction to optimization methods]. Moscow, NITs INFRA-M Publ., 2008. 272 p.
[19] Attetkov A.V., Zarubin V.S., Kanatnikov A.N. Metody optimizatsii [Optimization methods]. Moscow, ITs RIOR Publ., 2012. 270 p.
[20] Zarubin V.S., Kuvyrkin G.N., Savel’yeva I.Yu. A variation model option for the heat breakdown of solid dielectric layer under constant voltage. Radiooptika [Radiooptics], 2016, no. 5, pp. 38–50 (in Russ.). DOI: 10.7463/rdopt.0516.0848088 Available at: http://radiooptics.ru/en/doc/848088.html
[21] Kartashov E.M. Analiticheskie metody v teorii teploprovodnosti tverdykh tel [Analytical methods in solids thermal conductivity theory]. Moscow, Vysshaya shkola Publ., 2001. 550 p.