|

The Temperature State of a Plane Polymer Dielectric Layer with Temperature-Dependent Heat Conduction

Authors: Zarubin V.S., Savelyeva I.Yu., Stankevich I.V. Published: 01.08.2018
Published in issue: #4(79)/2018  
DOI: 10.18698/1812-3368-2018-4-14-23

 
Category: Mathematics and Mechanics | Chapter: Mathematical Physics  
Keywords: dielectric, temperature state, mathematical model, integral relation, dielectric thermal breakdown

The purpose of the study was to build a mathematical model describing the steady-state temperature state of a planar homogeneous layer of a polymer dielectric with a nonmonotone temperature dependence of the dielectric losses at an alternating voltage. The model was assigned to the integral relation which takes into account a possible change in the heat conduction coefficient of a dielectric with temperature. The quantitative assay of the integral relation allows us to determine the conditions under which dielectric thermal breakdown occurs, as well as the limiting temperature distribution over the thickness of the layer before the onset of this state

The work was carried out within the framework of the state assignments of the Ministry of Education and Science of the Russian Federation (projects no. 9.7784.2017/БЧ and no. 9.2422.2017/ПЧ)

References

[1] Valter A.F., ed. Fizika dielektrikov [Dielectric physics]. Leningrad, Moscow, GTTI Publ., 1932. 560 p.

[2] Skanavi G.I. Fizika dielektrikov (oblast silnykh poley) [Dielectric physics (high-field region)]. Moscow, Fizmatgiz Publ., 1958. 908 р.

[3] Vorobyev G.A., Pokholkov Yu.P., Korolev Yu.D., Merkulov V.I. Fizika dielektrikov (oblast silnykh poley) [Dielectrics physics (high-field region)]. Tomsk, TPU Publ., 2003. 244 p.

[4] Proboy dielektrikov [Dielectric breakdown]. websor.ru: website (in Russ.). Available at: https://www.websor.ru/proboi_dielektricov.html (accessed: 06.07.2017).

[5] Sazhin B.I., ed. Elektricheskie svoystva polimerov [Electrical properties of polymers]. Leningrad, Khimiya Publ., 1986. 224 p.

[6] Koritskiy Yu.V., Pasynkov V.V., Tareev B.M., ed. Spravochnik po elektrotekhnicheskim materialam. T. 2 [Handbook on electrotechnical materials. Vol. 2]. Moscow, Energoatomizdat Publ., 1987. 464 p.

[7] Trofimov N.N., Kanovich M.Z., Kartashov E.M. et al. Fizika kompozitsionnykh materialov. T. 2 [Physics of composites. Vol. 2]. Moscow, Mir Publ., 2005. 344 p.

[8] Zarubin V.S., Kuvyrkin G.N. Matematicheskie modeli mekhaniki i elektrodinamiki sploshnoy sredy [Mathematical models of continuous medium mechanics and electrodynamics]. Moscow, Bauman MSTU Publ., 2008. 512 p.

[9] Zarubin V.S. Modelirovanie [Simulation]. Moscow, Akademiya Publ., 2013. 336 p.

[10] Zarubin V.S. Inzhenernye metody resheniya zadach teploprovodnosti [Engineering methods for solving heat conduction problems]. Moscow, Energoatomizdat Publ., 1983. 328 p.

[11] Tareev B.M. Fizika dielektricheskikh materialov [Dielectric physics]. Moscow, Energoatomizdat Publ., 1982. 320 p.

[12] Zarubin V.S., Kotovich A.V., Kuvyrkin G.N. Variaton form of a thermal breakdown model for solid dielectric under alternating-current voltage. Izvestiya RAN. Energetika [Proceedings of the Russian Academy of Sciences. Power Engineering], 2017, no. 4, pp. 77–86 (in Russ.).