|

Influence of a Support Type and Location on the Value of Critical Load for Compression Bar

Authors: Sahakyan A.A. Published: 26.07.2017
Published in issue: #4(73)/2017  
DOI: 10.18698/1812-3368-2017-4-65-74

 
Category: Mathematics and Mechanics | Chapter: Solid Mechanics  
Keywords: bar, stability, intermediate support, conservative force, follower force

The study considers the stability problem of a rectilinear bar fastened at one end and compressed by a central axial force. We assume that at some point the bar is supported by a) hinge, allowing axial movement and rotation, or b) sliding sleeve, allowing axial movement only. We examine three types of end fastening: a) hinge, b) rigid clamp and c) sliding sleeve perpendicular to the bar axis. We solved the stability problem for the bar for both "conservative" compressing force and "follower" force. Findings of the research show that in the case of hinge support the value of critical "conservative" force decreases monotonically when the distance between the fastened end and the support decreases, but in the case of sliding sleeve the value of critical "conservative" force has a maximum. The point of maximum and maximal value depend on the type of the bar end fastening. In case when the compressing load is a "follower" force, the value of critical force increases mono-tonically when the distance between the fastened end and the support decreases.

References

[1] Shan W., Chen Z. Mechanical instability of thin elastic rods. Journal of Postdoctoral Research, 2013, vol. 1, no. 2, pp. 1-8. Available at: http://www.postdocjournal.com/archives/557/mechanical-instability-of-thin-elastic-rods.htm

[2] Brangwynne C.P., MacKintosh F.C., Kumar S., Geisse N.A., Talbot J., Mahade-van L., Parker K.K., Ingber D.E., Weitz D.A. Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. The Journal of Cell Biology, 2006, vol. 173, no. 5, pp. 733-741. DOI: 10.1083/jcb.200601060 Available at: http://jcb.rupress.org/content/173/5/733

[3] Das M., Levine A.J., MacKintosh F.C. Buckling and force propagation along intracellular microtubules. Europhysics Letters, 2008, vol. 84, no. 1, pp. 18003. DOI: 10.1209/0295-5075/84/18003 Available at: http://iopscience.iop.org/article/10.1209/0295-5075/84/18003/pdf

[4] Sun Y., Choi W.M., Jiang H., Huang Y.Y., Rogers J.A. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nature Nanotechnology, 2006, vol. 1, no. 3, pp. 201-207. DOI: 10.1038/nnano.2006.131 Available at: http://www.nature.com/nnano/journal/v1/n3/abs/nnano.2006.131.html

[5] Xu F., Lu W., Zhu Y. Controlled 3D buckling of silicon nanowires for stretchable electronics. ACS Nano, 2011, vol. 5, no. 1, pp. 672-678. DOI: 10.1021/nn103189z Available at: http://pubs.acs.org/doi/abs/10.1021/nn103189z

[6] Liu Y., Xue Y. Some aspects of research on mechanics of thin elastic rod. Journal of Physics: Conference Series, 2013, vol. 448, conf. 1, pp. 012001. DOI: 10.1088/1742-6596/448/1/012001 Available at: http://iopscience.iop.org/article/10.1088/1742-6596/448/1/012001/meta

[7] Kolomiets L., Orobey V., Lymarenko A. Non-conservative problems of the stability of bar structures. Hrcak, 2015, vol. 9, no. 3, pp. 311-316. Available at: http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=215291&lang=en

[8] Auciello N.M. Stability and vibration of roads under follower forces; the boundary characteristic orthogonal polynomials (BCOP) method. Proc. of AIMETA2009 XIX Int. Congress of the Italian Association for Theoretical and Applied Mechanics. 2009, Italy, ARAS Edizioni, pp. 1-10.

[9] Banichuk N.V. Optimizatsiya form uprugikh tel [Elastic body shape optimization]. Moscow, Nauka Publ., 1980. 256 p.

[10] Gnuni V.Ts. Optimal’nyy vybor raspolozheniya opor v zadachakh izgiba, kolebaniy i ustoychivosti uprugoy balki [Optimum choice of support arrangement in bending, vibration and spring beam stability problems]. Sb. "Voprosy optimal’nogo upravleniya, ustoychivosti i prochnosti mekhanicheskikh sistem" [Collection "Problems of mechanical system optimal control, stability and strength]. Erevan: EGU Publ., 1997, рp. 115-120 (in Russ.).

[11] Gnuni V.Ts., Eloyan A.V. Optimal choice of the supports place in the problem of the rectangular plate bending. Izvestiya NAN RA. Mekhanika [Proceedings of National Academy of Sciences of Armenia: Mechanics], 2001, vol. 54, no. 3, pp. 14-17 (in Russ.).

[12] Lee G.E., Reissner E. Note on a problem of beam buckling. Journal of Applied Mathematics and Physics, 1975, vol. 26, no. 6, pp. 839-841. DOI: 10.1007/BF01596086 Available at: http://link.springer.com/article/10.1007%2FBF01596086

[13] Vol’mir A.S. Ustoychivost’ deformiruemykh system [Stability of deformable systems]. Moscow, Nauka Publ., 1967. 984 p.