Atomic Functions and Motion Planning for a Welding Robot
Authors: Komova O.I., Maslov A.I., Osadchenko N.V. | Published: 27.09.2018 |
Published in issue: #5(80)/2018 | |
DOI: 10.18698/1812-3368-2018-5-15-36 | |
Category: Mathematics and Mechanics | Chapter: Substantial Analysis, Complex and Functional Analysis | |
Keywords: welding robot, multi-link manipulator, friction stir welding, motion planning, atomic functions, splines, kinematic analysis |
The investigation deals with the kinematic level of a control system for a friction stir welding robot. We propose using U-splines, that is, infinitely differentiable spline functions based on atomic functions, to implement motion planning of the end effector in such a robot. We solved the problem of interpolating a function of a real variable by means of 3rd order U-splines, obtaining a system of equations in their coefficients, and proved its solvability for any step size ratio in the grid used. We present steps for planning the motion of the welding robot end effector employing U-splines and a kinematic analysis algorithm for the robot to determine its joint trajectories. The algorithm involves numerical integration of the kinematic equations describing the robot, repea-tedly solving velocity-based inverse kinematics problems. The paper also considers issues of software implementation of this algorithm
References
[1] Mendes N., Neto P., Simao M.A., Loureiro A., Pires J.N. A novel friction stir welding robotic platform: welding polymeric materials. Int. J. Adv. Manuf. Technol., 2016, vol. 85, iss. 1-4, pp. 37–46. DOI: 10.1007/s00170-014-6024-z
[2] Koltygin D.S., Romanyuk D.Yu. Analysis and features of robot welders application. Trudy Bratskogo gos. un-ta. Seriya: Estestvennye i inzhenernye nauki, 2016, no. 2, pp. 138–141 (in Russ.).
[3] Kozhevnikov M.M., Ilyushin I.E., Starovoytov A.V., Kosyrev V.N. Trajectory planning of robotic manipulators in the process of resistance spot welding. Vestnik Gomelskogo gos. tekhn. un-ta im. P.O. Sukhogo, 2016, no. 2, pp. 3–10 (in Russ.).
[4] Fang H.C., Ong S.K., Nee A.Y.C. Adaptive pass planning and optimization for robotic welding of complex joints. Advances in Manufacturing, 2017, vol. 5, iss. 2, pp. 93–104. DOI: 10.1007/s40436-017-0181-x
[5] Dementyev Yu.N., Knyazkov A.F., Knyazkov S.A. Geometrical adaptation system of specialized welding robot. Izvestiya Tomskogo politekhn. un-ta. Inzhiniring georesursov [Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering], 2008, vol. 312, no. 4, pp. 117–118 (in Russ.).
[6] Schwartz M.V., Maloletkov A.V., Perkovskiy R.A. Application of laser tracking system in automatic MIG/MAG welding control. Nauka i Obrazovanie: nauchnoe izdanie [Science and Education: Scientific Publications], 2013, no. 9 (in Russ.). DOI: 10.7463/1213.0628186
[7] Lyudmirskiy Yu.G., Lukyanov V.F., Zhak S.V. Simulation model for quality predicting of weld seams made by non-adaptive robots. Vestnik Donskogo gos. Tekhn. Un-ta [Vestnik of Don State Technical University], 2006, vol. 6, no. 4, pp. 301–310 (in Russ.).
[8] Poezzhaeva E.V., Sergeev A.A., Misyurov M.N. Adaptive intellektny system of tracking of the seam in real time at welding robotization. Izvestiya Samarskogo nauch. Tsentra RAN [Izvestia of Samara Scientific Center of the Russian Academy of Sciences], 2015, vol. 17, no. 6 (2), pp. 582–584 (in Russ.).
[9] Ishchenko A.Ya., Podelnikov S.V., Poklyatskiy A.G. Friction stir welding of aluminium alloys (a review). Avtomaticheskaya svarka, 2007, no. 11, pp. 32–38 (in Russ.).
[10] Maslennikov A.V., Erofeev V.A. Physico-mathematical model of friction welding mixing. Izvestiya Tulskogo gos. Un-ta. Tekhnicheskie nauki [Izvestiya Tula State University], 2013, no. 10, pp. 64–73 (in Russ.).
[11] Karmanov V.V., Kameneva A.L., Karmanov V.V. The friction stir welding of aluminium alloys: essence and specific of the process, features of the weld joint structure. Vestnik Permskogo nats. Issled. Politekhn. un-ta. Aerokosmicheskaya tekhnika [PNRPU Aerospace Engineering Bulletin], 2012, no. 32, pp. 67–80 (in Russ.).
[12] Mendes N., Neto P., Loureiro A., Moreira A.P. Machines and control systems for friction stir welding: a review. Materials & Design, 2016, vol. 90, pp. 256–265. DOI: 10.1016/j.matdes.2015.10.124
[13] Mishra R.S., Mahoney M.W., eds. Friction stir welding and processing. ASM, 2007. 368 p.
[14] Li Q., Wu W., Xiang J., Li H., Wu Ch. A hybrid robot for friction stir welding. Proc. Inst. Mech. Eng. C., 2015, vol. 229, no. 14, pp. 2639–2650. DOI: 10.1177/0954406214562848
[15] Qin J., Leonard F., Abba G. Real-time trajectory compensation in robotic friction stir welding using state estimators. IEEE Trans. Control Syst. Technol., 2016, vol. 24, iss. 6, pp. 2207–2214. DOI: 10.1109/TCST.2016.2536482
[16] Qi R., Zhou W., Zhang H., Zhang W., Yang G. Trace generation of friction stir welding robot for space weld joint on large thin-walled parts. Industrial Robot: An International Journal, 2016, vol. 43, iss. 6, pp. 617–627. DOI: 10.1108/IR-04-2015-0075
[17] Osadchenko N.V. Metod vintov v vychislitelnoy mekhanike [Screw method in computational mechanics]. Problemy mekhaniki upravlyaemykh sistem, mashin i mekhanizmov Mezhvuzov. temat. sb. № 77 [Problems of mechanics of controlled systems, machines and mechanisms: intercollegiate thematic collection no. 77]. Moscow, MPEI Publ., 1985, pp. 61–68 (in Russ.).
[18] Koretskiy A.V., Osadchenko N.V. Staticheskiy i kinematicheskiy analiz manipulyatsionnykh robotov na baze teorii vintov [Static and kinematic analysis of manipulative robots based on screw theory]. Avtomaticheskoe upravlenie i intellektualnye sistemy. Mezhvuzov. sb. nauch. tr. [Automatic Control and Intelligent Systems: Intercollegiate Thematic Collection]. Moscow, Mosk. gos. in-t radiotekhniki, elektroniki i avtomatiki Publ., 1996, pp. 114–119 (in Russ.).
[19] Zenkevich S.L., Yushchenko A.S. Osnovy upravleniya manipulyatsionnymi robotami [Fundamentals of manipulative robots control]. Moscow, Bauman MSTU Publ., 2004. 480 p.
[20] Koretskiy A.V., Osadchenko N.V. Kompyuternoe modelirovanie kinematiki manipulyatsionnykh robotov [Computer simulation of manipulative ronots kinematics]. Moscow, MPEI Publ., 2000. 48 p. (in Russ.).
[21] Kravchenko V.F. Lektsii po teorii atomarnykh funktsiy i nekotorym ikh prilozheniyam [Lectures on atomic functions theory and some their applications]. Moscow, Radiotekhnika Publ., 2003. 512 p.
[22] Kravchenko V.F., Rvachev V.L. Algebra logiki, atomarnye funktsii i veyvlety v fizicheskikh prilozheniyakh [Logic algebra, atomic functions and wavelets in physical applications]. Moscow, Fizmatlit Publ., 2006. 416 p.
[23] Dudareva N.Yu., Zagayko S.A. SolidWorks 2011 na primerakh [SolidWorks 2011 in examples]. Saint Petersburg, BKhV-Peterburg Publ., 2011. 496 p.
[24] Zavrazhina T.V. Influence of elastic compliance of links on the dynamics and accuracy of a manipulating robot with rotational and translational joints. Mechanics of Solids, 2008, vol. 43, iss. 6, pp. 850–862. DOI: 10.3103/S0025654408060034
[25] Maslov A.N. [Finite control on manipulator with fundamental mode quenching of elasticity oscillations]. Mat. dokl. XI konf. molodykh uchenykh "Navigatsiya i upravlenie dvizheniem" [Proc. XI Conf. of Young Scientists Navigation and Motion Control]. Saint Petersburg, TsNII Elektropribor Publ., 2009, pp. 470–477 (in Russ.).
[26] Bobrov A.I., Maslov A.N., Osadchenko N.V. [Quenching of robotic manipulator elasticity oscillations in the single-mode approximation]. Radioelektronika, elektrotekhnika i energetika. Tez. dokl. 17-y Mezhdunar. nauch.-tekhn. konf. studentov i aspirantov. T. 3 [Radioelectronics, Electrical Engineering and Power Engineering: Abs. 17th Int. Sci.-Tech. Conf. of Students and Postgraduates. Vol. 3]. Moscow, MPEI Publ., 2011, pp. 293–294 (in Russ.).
[27] Maslov A.N. The positioning of the non-rigid robot-manipulators link with restrictions on control. Vestnik MEI [MPEI Vestnik], 2011, no. 2, pp. 5–9 (in Russ.).
[28] Andreev A.S., Peregudova O.A On control for double-link manipulator with elastic joints. Nelineynaya dinamika [Russian Journal of Nonlinear Dynamics], 2015, vol. 11, no. 2, pp. 267–277 (in Russ.).
[29] Koretskiy A.V., Osadchenko N.V. [Screw method and computer solution of the kinematic analysis problems of manipulative robots]. Tez. dokl. mezhdunar. konf. "Informatsionnye sredstva i tekhnologii". T. 2 [Abs. Int. Conf. Information Tools and Technologies. Vol. 2]. Moscow, Stankin Publ., 1996, pp. 48–53 (in Russ.).
[30] Rvachev V.A. Atomarnye funktsii i ikh primenenie [Atomic functions and their application]. In: Teoriya R-funktsiy i aktualnye problemy prikladnoy matematiki [R-function theory and actual problems of applied mathematics]. Kiev, Naukova dumka Publ., 1986, pp. 45–65.
[31] Kolodyazhnyy V.M., Rvachev V.A. Atomic radial basic functions in numerical algorithms for solving boundary value problems of Laplace equation. Kibernetika i sistemnyy analiz [Cybernetics and Systems Analysis], 2008, vol. 44, no. 4, pp. 165–178 (in Russ.).
[32] Lisina O.Yu. Simulation of heat fields in engineering products of noncanonical forms. Problemy mashinostroeniya [Journal of Mechanical Engineering], 2011, vol. 14, no. 6, pp. 57–64 (in Russ.).
[33] Budunova K.A., Konovalov Ya.Yu., Kravchenko O.V. Application of atomic functions in collocation method for Fredholm integral equations of the second kind. Fizicheskie osnovy priborostroeniya [Physical Bases of Instrumentation], 2016, vol. 5, no. 4 (21), pp. 58–64 (in Russ.).
[34] Basarab M.A., Kravchenko V.F., Matveev V.A. Quaternions and atomic functions in problems of spherical interpolation and approximation. Uspekhi sovremennoy radioelektroniki [Achieve-ments of Modern Radioelectronics], 2006, no. 8, pp. 5–24 (in Russ.).
[35] Kravchenko V. F., Kravchenko O.V., Pustovoit V.I., Churikov D.V. Atomic, WA-systems, and R-functions applied in modern radio physics problems: Part I. Journal of Communications Technology and Electronics, 2014, vol. 59, iss. 10, pp. 981–1009. DOI: 10.1134/S1064226914090046
[36] Kravchenko V.F., Kravchenko O.V., Churikov D.V. Atomic functions in the problems of filtering and digital signal processing. Fizicheskie osnovy priborostroeniya [Physical Bases of Instrumentation], 2015, vol. 4, no. 2 (15), pp. 5–53 (in Russ.).
[37] Kravchenko V.F., Kravchenko O.V., Pustovoit V.I., Churikov D.V. Atomic functions and WA-systems of functions in radio physics and techniques modern problems. Elektromagnitnye volny i elektronnye sistemy [Electromagnetic Waves and Electronic Systems], 2011, vol. 16, no. 9, pp. 7–32 (in Russ.).
[38] Kravchenko V.F., Kravchenko O.V., Pustovoit V.I., Churikov D.V., Yurin A.V. Atomic and WA-systems and R-functions applied in modern radio physics problems: Part II. Journal of Communications Technology and Electronics, 2015, vol. 60, iss. 2, pp. 103–141. DOI: 10.1134/S1064226915020084
[39] Kravchenko V.F., Kravchenko O.V., Konovalov Ya.Yu., Pustovoit V.I., Churikov D.V. Atomic, WA-systems, and R-functions applied in modern radio physics problems: Part III. Journal of Communications Technology and Electronics, 2015, vol. 60, iss. 7, pp. 707–736. DOI: 10.1134/S1064226915070104
[40] Kravchenko V.F., Kravchenko O.V., Churikov D.V., Pustovoit V.I., Yurin A.V. Atomic, WA-systems, and R-functions applied in modern radio physics problems: Part IV. Journal of Communications Technology and Electronics, 2015, vol. 60, iss. 11, pp. 1153–1190. DOI: 10.1134/S1064226915110078
[41] Rvachev V.A., Rvacheva T.V. On Hermite interpolation by means of atomic functions. Radioelektronni i kompyuterni sistemi [Radioelectronic and Computer Systems], 2010, no. 4 (45), pp. 100–104 (in Russ.).
[42] Rvachev V.A., Rvacheva T.V., Tomilova E.P. Birkhoff interpolation with polinomial splines of fourth degree. Radioelektronni i kompyuterni sistemi [Radioelectronic and Computer Systems], 2015, no. 1 (71), pp. 33–38 (in Russ.).
[43] Osadchenko N.V. Local monotone interpolation and one-parameter groups. Prostranstvo, vremya i fundamentalnye vzaimodeystviya [Space, Time and Fundamental Interactions], 2017, no. 2, pp. 60–73 (in Russ.).
[44] Zavyalov Yu.S., Leus V.A., Skorospelov V.A. Splayny v inzhenernoy geometrii [Splines in engineering geometry]. Moscow, Mashinostroenie Publ., 1985. 224 p.
[45] Shivakumar P.N., Sivakumar K.C., Zhang Y. Infinite matrices and their recent applications. Springer, 2016. 118 p.
[46] Osadchenko N.V. C 2 monotone spline interpolation based on one-parameter groups of diffeomorphisms. Prostranstvo, vremya i fundamentalnye vzaimodeystviya [Space, Time and Fundamental Interactions], 2017, no. 3, pp. 12–27 (in Russ.).
[47] Koltygin D.S., Sedelnikov I.A., Petukhov N.V. Analytical and numerical methods of inverse kinematic problem solution for DELTA robot. Vestnik Irkutskogo gos. tekhn. un-ta [Proceedings of Irkutsk State Technical University], 2017, vol. 21, no. 5 (124), pp. 87–96 (in Russ.). DOI: 10.21285/1814-3520-2017-5-87-96
[48] Kapustina O.M. Description of the exact solutions set of inverse kinematic problem for KUKA YouBot robot by means of its platform generalized coordinates. Estestvennye i tekhnicheskie nauki [Natural and Technical Sciences], 2016, no. 12 (102), pp. 176–180 (in Russ.).
[49] Hairer E., Norsett S.P., Wanner G. Solving ordinary differential equations I. Nonstiff problems. Springer, 1987. 482 p.