Numerical Study of Thermal Stability of a Catalyst Granule with Internal Heat Release in Random Field of Medium Temperature
Authors: Derevich I.V., Galdina D.D. | Published: 07.04.2014 |
Published in issue: #2(53)/2014 | |
DOI: | |
Category: Applied Mathematics and Methods of Mathematical Simulation | |
Keywords: stochastic ordinary differential equation, autocorrelation function, heat explosion, Semenov’s diagram, temperature fluctuations |
A method is proposed for simulating the temperature of a granule with internal heat release that is immersed in a medium with random temperature fluctuations. The method is based on solving the system of stochastic ordinary differential equations that presents the medium temperature fluctuations as a random process with the finite time of the autocorrelation function decay. The method testing is conducted on the basis of comparing the test data with exact analytical results. It is shown that the behavior of temperature of the granule with internal heat release in a random medium differs qualitatively from the results obtained within the deterministic approach. The time that elapses before the heat explosion in a medium with temperature fluctuations is calculated for different regime parameters.
References
[1] Steynberg A.P., Dry M.E., Davis B.H., Breman B.B. Fischer-Tropsch Reactors. Fischer-Tropsch Technology. Studies in Surface Science and Catalysis. Amsterdam: Elsevier, 2004. vol. 152, pp. 64-195.
[2] Zel’dovich Ya.B., Barenblatt G.I., Librovich V.B., Makhviladze G.M. Matematicheskaya teoriya goreniya i vzryva [Mathematical theory of combustion and explosion]. Moscow, Nauka Publ., 1974. 432 p.
[3] Frank-Kamenetskiy D.A. Diffuziya i teploperedacha v khimicheskoy Kinetike [Diffusion and heat transfer in chemical kinetics]. Moscow, Nauka Publ., 1987. 502 p.
[4] Merzhanov A.G., Rumanov E.N. Nonlinear effects in macroscopic kinetics. Usp. Fiz. Nauk [Sov. Phys.-Usp.], 1987, vol. 151, no. 4, pp. 553-593.
[5] Khudyaev S.I. Porogovye yavleniya v nelineynykh uravneniyakh [Threshold Phenomena in Nonlinear Equations]. Moscow, Fizmatlit Publ., 2003. 272 p.
[6] Varnatts Yu., Maas U., Dibbl R. Gorenie. (Russ. ed.: Varnatts Yu., Maas U., Dibbl R. Fizicheskie i khimicheskie aspekty, modelirovanie, eksperimenty, obrazovanie zagryaznyayushchikh veshchestv. Moscow, Fizmatlit Publ., 2003. 352 p.).
[7] Xofrstemaxe V., Air in R. Noise-induced transitions: Theory and applications in physics, chemistry, biology. New York: Wiley, 1987. 400 p. (Russ. ed.: Moscow, Mir Publ., 1987. 400 p.).
[8] Derevich I.V., Gromadskaya R.S. Rate of chemical reactions with regard to temperature fluctuations. Theoretical Foundations of Chemical Engineering, 1997, vol. 31, no. 4, pp. 392-397.
[9] Fedotov S.P., Tret’yakov M.V. Stationary regimes of heterogeneous chemical reaction in the presence of ambient noise. Khimicheskaya fizika [Chemical Phys.]. 1988, vol. 7, no. 11, pp. 1533-1537.
[10] Fedotov S.P., Tret’yakov M.V. Stochastic ignition particles. Khimicheskaya fizika [Chemical Physics], 1991, vol. 10, no. 2, pp. 238-241 (in Russ.).
[11] Medvedev V.G., Telegin V.G., Telegin G.G. Statistical analysis kinetics of adiabatic thermal explosion. Fizika goreniya i vzryva [Combustion, Explosion, and Shock Waves], 2009, vol. 45, no. 3, pp. 44-48 (in Russ.).
[12] Derevich I.V., Zaychik L.I. The equation for the probability density of the velocity and temperature of the particles in a turbulent flow, the simulated Gaussian random field. Prikladnaya matematika i mekhanika, 1990, vol. 54, pp. 767-774.
[13] Derevich I.V. Effect of temperature fluctuations of fluid on thermal stability of particles with exothermic chemical reaction. Int. J. Heat Mass Transfer, 2010, vol. 53, pp. 5920-5932.
[14] Derevich I.V. Influence of temperature fluctuations on the thermal explosion of single particle. Fizika goreniya i vzryva [Physics of combustion and explosion], 2011, vol. 47, no. 5, pp. 1-12.
[15] Derevich I.V. Temperature oscillation in a catalytic particle of Fischer-Tropsch synthesis. Int. J. Heat and Mass Transfer, 2010, vol. 53, pp. 135-153.
[16] Klyatskin E.I. Stokhasticheskie uravneniya glazami fizika (osnovnye po- lozheniya, tochnye rezul’taty i asimptoticheskie priblizheniya) [Stochastic equations by eyes physics (basic framework, exact results and asymptotic approximations)]. Moscow, Fizmatlit Publ., 2001. 528 p.
[17] Liang G.Y., Cao L., Wu D.J. Approximate Fokker-Planck equation of system driven by multiplicative colored noises with colored cross-correlation. Physica A. 2004, vol. 335. pp. 371-384.
[18] Gillespie D.T. Exact numerical simulation of the Ornstein - Uhlenbeck process and its integral. Physical Review E. 1996, vol. 54, no. 2, pp. 2084-2091.
[19] Ilie S., Teslya A. An adaptive stepsize method for the chemical Langevin equation. J.Chem. Phys., 2012, vol. 136, pp. 184101 (14).
[20] Gardiner K.V. Stochastic methods in the natural sciences. New York: Wiley, (Russ. ed.: Stokhasticheskie metody v estestvennykh naukakh. Mir Publ., 1986. 527 p.).
[21] Levi P. Stokhasticheskie protsessy i brounovskoe dvizhenie [Stochastic processes and Brownian motion]. (Russ. ed.: Moscow, Nauka Publ., 1972. 376 p.