Calculation of Critical Thickness of the Protective Shell of the Cylindrical Electric Heating Element
Authors: Martinson L.K., Chigiryova O.Yu. | Published: 14.09.2014 |
Published in issue: #4(55)/2014 | |
DOI: | |
Category: Applied Mathematics and Methods of Mathematical Simulation | |
Keywords: electric heating element, non-stationary process of nonlinear heat conductivity, thermal contact resistance |
The mathematical model of non-stationary process of heat conduction in an electric heating element is considered. The element is a cylindrical conductor with a protective ceramic coating sputtered on its lateral surface. The conducting layer of the electric heating element generates heat of the volumetric power depending on electric current. The heat extracts from a surface of protective coating according to the Newton law. The contact surface between layers is assumed to possess known thermal resistance and thermal physical properties of materials depend on temperature. Influence of geometrical and thermo physical parameters of the model on the evolution of the electric heating element temperature has been studied, operating modes of heating without melting the conductor being determined. A critical value of the protective ceramic coating thickness at which temperature on the axis of the conductor reaches the melting temperature is defined.
References
[1] Zarubin V.S. Inzhenernye metody resheniya zadach teploprovodnosti [Engineering methods for solving problems of heat conduction]. Moscow, Energoatomizdat Publ., 1983. 329 p.
[2] Dimitrienko Yu.I. Mekhanika kompozitsionnykh materialov pri vysokikh temperaturakh [Mechanics of composite materials at high temperatures]. Moscow, Mashinostroenie Publ., 1997. 368 p.
[3] Landau L.D., Lifshic E.M. Teoreticheskaja fizika. V 10 t. T. 6. Gidrodinamika [Theoretical physics. Ten-volume set. Vol. 6. Fluid mechanic]. Moscow, Nauka Publ., 1989. 752 p. (Eng. Ed.: Landau L.D., Lifshitz E.M. Fluid Mechanics. Vol. 6 (Course of Theoretical Physics S). Second Ed. Oxford, New York, Pergamon Press, 1987.).
[4] Frank-Kamenetskiy D.A. Diffuziya i teploperedacha v khimicheskoy kinetike. [Diffusion and Heat Transfer in Chemical Kinetics]. Moscow, Nauka Publ., 1967. 481 p.
[5] Malov Yu.I., Nuzhnenko T.A. Mathematical simulation of unsteady heat conduction in a cylindrical fuel element. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2003, no. 2, pp. 20-27 (in Russ.).
[6] Stel’makh L.S., Zinenko Zh.A., Radugin A.V., Stolin A.M. Numerical research the thermal instability during heating of ceramic materials. Inzhenerno-fizicheskiy zhurnal [J. Eng.Phys. Thermophys.], 1991, vol. 61, no. 3, pp. 452-457 (in Russ.).
[7] Malov Yu.I., Martinson L.K. Effect of thermal shell parameters on the critical mode of the spherical fuel element Tezisy dokl. 3 Vseross. Konf. "Neobratimye protsessy v prirode i tekhnike" [Summ. Rep. 3th All-Russ. Conf. "Irreversible processes in the Nature and Technology"], Moscow, 24-25 January 2005, MGTU im. N.E. Baumana Publ., 2005, pp. 151-152 (in Russ.).
[8] Dimitrienko Yu.I., Minin V.V., Syzdykov E.K. Modeling of internal heat and mass transfer and thermal stresses in composite shells with local heating. Mat. Model. [Math. Models Comput. Simul.], 2011, vol. 23, no. 9, pp. 14-32 (in Russ.).
[9] Chigireva O.Yu. Mathematical simulation of heating process of two-layer cylinder by moving ring source of heat. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2011, no. 2, pp. 98-106 (in Russ.).
[10] Averin B.V. On the thermal stability of multilayer planar walls during heating by internal sources, depending on the temperature. Vestn. Samar. Gos. Univ., Fiz.-Mat. Ser. [J. Samara State Univ., Phys.-Math. Ser.], 2009, no. 2, pp. 177-185 (in Russ.).
[11] Kartashov E.M. Analiticheskie metody v teorii teploprovodnosti tverdykh tel [Analytical techniques in the theory of thermal conductivity of solids]. Moscow, Vysshaya Shkola Publ., 2001. 550 p.
[12] Martinson L.K., Malov Yu.I. Differentsial’nye uravneniya matematicheskoy fiziki [The differential equations of mathematical physics]. Moscow, MGTU im. N.E. Baumana Publ., 2002. 368 p.
[13] Chigireva O.Yu. Calculation of the optimal layer thickness of thermal insulation in a multilayer cylindrical package. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2005, no. 1, pp. 94-101 (in Russ.).
[14] Malov Yu.I., Martinson L.K. Priblizhennye metody resheniya kraevykh zadach [Approximate methods for solution of boundary problems]. Moscow, MGTU im. N.E. Baumana Publ., 1989. 26 p.
[15] Lions G.L. Some methods for the solution of nonlinear boundary problems. Paris, Dunod, 1969. (Russ. ed.: Lions Zh.-L. Nekotorye metody resheniya nelineynykh kraevykh zadach. Moscow, Mir Publ., 1972. 587 p.).
[16] Tikhonov A.N., Samarskiy A.A. Uravneniya matematicheskoy fiziki [Equations of Mathematical Physics]. M.: MGU Publ., 1999. 798 p. (Eng. Ed.: Tikhonov A.N., Samarskii A.A. Equations of Mathematical Physics. Oxford, N.Y., DOVER Publ. Inc., 1964. 784 p.).
[17] Kantorovich L.V., Akilov G.P. Funktsional’nyy analiz [Function analysis] Moscow, Nauka Publ., 1984. 752 p. (Eng. Ed.: Kantorovich L.V., Akilov G.P. Function analysis. 2nd ed. Oxford, New York, Pergamon Press, 1982. 589 p.)
[18] Kantorovich L.V., Krylov V.I. Priblizhennye metody vysshego analiza. [Approximate methods of higher analysis] Moscow, Fizmatgiz Publ., 1962. 708 p. (Kantorovich L.V., Krylov V.I. Approximate Methods of Higher Analysis. Translated by C.D. Benster. Groningen, P. Noordhoff Ltd., 1958. 681 p.)
[19] Amosov A.A., Dubinskiy Yu.A., Kopchenova N.V. Vychislitel’nye metody dlya inzhenerov [Computational methods for engineers]. Moscow, Vysshaya Shkola Publ., 1994. 544 p.
[20] Chirkin V.S. Teplofizicheskie svoystva materialov: Spravochnoe rukovodstvo [Thermophysical properties of materials. Reference manual]. M.: Fizmatgiz, 1959. 356 p.