Generalized Three-Dimensional Theory of Elastic Body Stability. Part 2. Small Deformations
Authors: Dimitrienko Yu.I. | Published: 14.02.2014 |
Published in issue: #1(52)/2014 | |
DOI: | |
Category: Mechanics | |
Keywords: three-dimensional stability theory, variational formulation |
Equations of the three-dimensional stability theory for the case of small deformations are deduced from general equations of the generalized theory of stability of nonlinearly elastic bodies with finite deformations. It is shown that relationships of the stability theory for small deformations will be identical for different models of nonlinearly elastic media if an additional assumption on smallness of the strain tensor as compared to the rotation tensor is made. The variational statement of a three-dimensional problem of the stability theory is formulated. The relationships of the three-dimensional stability theory in components are presented including those in the orthogonal basis.
References
[1] Guz’ A.N. Osnovy trekhmernoy teorii ustoychivosti deformiruemykh tel [Fundamentals of three-dimensional theory of deformable bodies stability]. Kiev, Vishcha Shkola Publ., 1986. 512 p.
[2] Kokhanenko Yu.V. Three-dimensional stability of the cylinder at a non-homogeneous initial state. Dokl. Akad. NaukNANU [Proc. Ukr. Acad. Sci.], 2009, no. 1, pp. 60-62 (in Russ.).
[3] Bazant Z.P. Stability of elastic, an elastic and disintegrating structures: a conspectus of main results. ZAMM, Z Angew. Math. Mech., 2000, vol. 80, no. 11-12, pp. 709732 (in Russ.).
[4] Timoshenko S.P., Gere J.M. Theory of elastic stability. 2nd. New York-Toronto-London: McGraw-Hill, 1961. 356 p.
[5] Vol’mir A.S. Ustoychivost’ deformiruemykh system [Stability of deformable systems]. Moscow, Nauka Publ., 1967. 964 p.
[6] Bazant Z.P., Cedolin L. Stability of structures. Oxford: Oxford University Press, 1990. 316 p.
[7] Vasil’ev V.V. Mekhanika kompozitsionnykh materialov [Mechanics of composite materials]. Moscow, Mashinostroyeniye Publ., 1984. 272 p.
[8] Grigolyuk E.I., Chulkov P.P. Ustoychivost’ i kolebaniya trekhsloynykh obolochek [Stability and vibration of sandwich shells ]. Moscow, Mashinostroyeniye Publ., 1973. 172 p.
[9] Dimitrienko Yu.I. Generalized three-dimensional theory of elastic bodies stability. Part 1. Finite deformations. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2013, no. 4 (51), pp. 79-95 (in Russ.).
[10] Dimitrienko Yu.I. Nelineynaya mekhanika sploshnoy sredy [Nonlinear continuum mechanics]. Moscow, Fizmatlit Publ., 2009. 624 p.
[11] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. T. 2. Universal’nye zakony mekhaniki i elektrodinamiki sploshnoy sredy [Continuum mechanics. Vol. 2. Universal laws of mechanics and electrodynamics of continuous media], Moscow, MGTU im. N.E. Baumana Publ., 2011. 464 p.
[12] Lur’e A.I. Nelineynaya teoriya uprugosti [Nonlinear theory of elasticity]. Moscow, Nauka Publ., 1980. 512 p.
[13] Dimitrienko Yu.I. Continuum mechanics. T. 1. Tensor analysis. Moscow, MGTU im. N.E. Baumana Publ., 2011. 462 p.