|

X-ray Diffraction and Electron Microscopic Studies of the ZnO(S) Metal Oxide Films Obtained by the Ultrasonic Spray Pyrolysis Method

Authors: Zaynabidinov S.Z., Yuldashev Sh.U., Boboev A.Y., Yunusaliyev N.Yu. Published: 04.03.2024
Published in issue: #1(112)/2024  
DOI: 10.18698/1812-3368-2024-1-78-92

 
Category: Physics | Chapter: Condensed Matter Physics  
Keywords: silicon, metal oxide, crystallographic orientation, lattice parameter, geometric shape, nanocrystallite, γ-irradiation

Abstract

Samples of thin ZnO(S) films with thickness of approximately 400 nm deposited on a silicon substrate by the ultrasonic spray pyrolysis were obtained. The films had crystallographic orientation (001) with the lattice parameters a = b = 0.3265 nm and c = 0.5212 nm. The ZnO1--xSx nanocrystallites on the film surface had characteristic sizes in the range of 50--200 nm. The nanocrystallites lattice parameter was experimentally determined: 0.7598 nm. A decrease in the ZnO film lattice parameters and the geometric dimensions of nanocrystallites on the film surface exposed to γ-irradiation was established. It was determined that the nanocrystals crystalline structure corresponded to the cubic lattice and belonged to the F43m space group with the lattice parameter of 0.7692 nm. According to the scanning electron microscopy, the nanocrystallites diameter was 50--200 nm, the nanocrystallites were growing perpendicular to the substrate along the z-axis with crystallographic orientation (111). It was established that the influence of γ-irradiation with a dose of 5 · 106 rad was making it possible to reduce the nanocrystallites size and led to alteration in their density and geometric shape

The work was supported by the Ministry of Innovative Development of the Republic of Uzbekistan (grant no. FZ- 292154210)

Please cite this article in English as:

Zaynabidinov S.Z., Yuldashev Sh.U., Boboev A.Y., et al. X-ray diffraction and electron microscopic studies of the ZnO(S) metal oxide films obtained by the ultrasonic spray pyrolysis method. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2024, no. 1 (112), pp. 78--92 (in Russ.). EDN: GFUKHQ

References

[1] Panda S.K., Jacob. C. Preparation of transparent ZnO thin films and their application in UV sensor devices. Solid-State Electron., 2012, vol. 73, pp. 44--50. DOI: https://doi.org/10.1016/j.sse.2012.03.004

[2] Georgobiani A.N., Gruzintsev A.N., Volkov V.T., et al. Effect of annealing in oxygen radicals on luminescence and electrical conductivity of ZnO:N films. Semiconductors, 2002, vol. 36, no. 3, pp. 265--269. DOI: https://doi.org/10.1134/1.1461400

[3] Liu W.W., Yao B., Zhang Z.Z., et al. Doping efficiency, optical and electrical properties of nitrogen-doped ZnO films. J. Appl. Phys., 2011, vol. 109, iss. 9, art. 093518. DOI: https://doi.org/10.1063/1.3579454

[4] Yuldashev Sh., Zaynabidinov S., Yunusaliev N. Ultrasonic technology of production and properties of ZnO(S) films. Scientific Bulletin. Physical and Mathematical Research, 2022, no. 2, pp. 60--64.

[5] Rembeza S.I., Rembeza E.S., Svistova T.V., et al. Metallooksidnye plenki: sintez, svoystva i primenenie [Metal-oxide films: synthesis, properties and applications]. Voronezh, VSU Publ., 2018.

[6] Loginova M.V., Yakovlev V.I., Filimonov V.Y., et al. Formation of structural states in mechanically activated powder mixtures Ti + Al exposed to gamma irradiation. Lett. Mater., 2018, vol. 8, no. 2, pp. 129--134. DOI: https://doi.org/10.22226/2410-3535-2018-2-129-134

[7] Husretov P.A. Elektricheskie i opticheskie svoystva plenok ZnO legirovannykh atomami azota. Dis. kand. fiz.-mat. nauk [Electrical and optical properties of ZnO films doped with nitrogen atoms. Cand. Sc. (Phys.-Math.) Diss.]. Tashkent, FTI Publ., 2011 (in Russ.).

[8] Nikolaeva N.S., Ivanov V.V. The chemical precipitation and thermal decomposition as the way for producing ultrafine zinc oxide forms. Zhurnal Sibirskogo federalnogo universiteta. Khimiya [Journal of Siberian Federal University. Chemistry], 2010, vol. 3, no. 2, pp. 153--173 (in Russ.).

[9] Klingshirin C. ZnO: From basics towards applications. PSS B, 2007, vol. 244, iss. 9, pp. 3027--3073. DOI: https://doi.org/10.1002/pssb.200743072

[10] Chikwenze R., Ezugwu S. Sulphur induced changes in the band gap energy and the transparency window of chemical bath deposited ZnO:S thin film. Chalcogenide Lett., 2015, vol. 12, no. 8, pp. 399--406.

[11] Nakamura S. Light emission movies into the blue. Phys. World, 1998, vol. 11, no. 2, pp. 31--35. DOI: https://doi.org/10.1088/2058-7058/11/2/31

[12] Khabibullaev P.K., Yuldashev Sh.U., Nusretov R.A. Electroluminescence of ZnO-based p--i--n structures fabricated by the ultrasound-spraying method. Dokl. Phys., 2007, vol. 52, no. 6, pp. 300--302. DOI: https://doi.org/10.1134/S102833580706002X

[13] Zaynabidinov S.Z., Saidov A.S., Boboev A.Y., et al. Structure, morphology and photoelectric properties of n-GaAs--p-(GaAs)1--x(Ge2)х heterostructure. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2022, no. 1 (100), pp. 72--87 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2022-1-72-87

[14] Belous A.I., Vasilyev Yu.B., Odzhaev V.B., et al. Structural and electrophysical parameters of heavily doped i-type silicon layers created by ion implantation. Mikroelektronika, 2013, vol. 42, no. 1, pp. 50--55 (in Russ.). DOI: https://doi.org/10.7868/S0544126913010055

[15] Setyukov O.A., Samoylov A.I. The effect of the x-ray diffractometer alignment on the lattice constant dependence on the Nelson --- Riley extrapolation function. Zavodskaya laboratoriya. Diagnostika materialov [Industrial Laboratory. Materials Diagnostics], 2011, vol. 77, no. 8, pp. 34--36 (in Russ.).

[16] Zaynabidinov S.Z., Utamuradova Sh.B., Boboev A.Y. Structural peculiarities of the (ZnSe)1--x--y(Ge2)x(GaAs1 -- δBiδ)y solid solution with various nanoinclusions. J. Surf. Investig., 2022, vol. 16, no. 12, pp. 1130--1134. DOI: https://doi.org/10.1134/S1027451022060593

[17] Guba S.K., Yuzevich V.N. Calculation of the surface characteristics and pressures of InAs quantum dots in a GaAs matrix. Semiconductors, 2014, vol. 48, no. 7, pp. 905--910. DOI: https://doi.org/10.1134/S1063782614070082

[18] Dubrovskiy V.G. Teoreticheskie osnovy tekhnologii poluprovodnikovykh nanostruktur [Theoretical bases of semiconductor nanostructure technology]. St. Petersburg, ITMO Publ., 2019.

[19] Zaynabidinov S.Z., Boboev A.Y., Abdurakhimov D.P. Structural features of a solid solution (GaAs)1--x(Ge2)x with quantum nanoparticles. Doklady Akademii Nauk, 2022, no. 1, pp. 22--25 (in Russ.).

[20] Umanskiy Ya.S., Skakov Yu.A., Ivanov A.N., et al. Kristallografiya, rentgenografiya i elektronnaya mikroskopiya [Crystallography, X-ray diffraction and electron microscopy]. Moscow, Metallurgiya Publ., 1982.