|

The Problem of Oscillations in a Plasma Channel with an Arbitrary Degree of Degeneracy of the Electron Gas

Authors: Gordeeva N.M., Latyshev A.V. Published: 08.06.2018
Published in issue: #3(78)/2018  
DOI: 10.18698/1812-3368-2018-3-97-103

 
Category: Physics | Chapter: Condensed Matter Physics  
Keywords: plasma oscillations, plasma in the layer, distribution function structure, electric field structure, plasma with an arbitrary degree of degeneracy

The paper states the boundary problem of oscillations of electron plasma in a layer of the conducting medium. Within the research we considered plasma with an arbitrary degree of degeneracy of the electron gas, the external electric field being perpendicular to the boundary of the medium. We applied mirror boundary conditions for boundary layer reflection of electrons. When setting the problem, we used the Vlasov --- Boltzmann kinetic equation with the BGK collision operator, i. e. Bhatnagar --- Gross --- Krook operator, and the Maxwell equation for the electric field. Reducing the boundary problem to the one-dimensional and one-velocity problem was crucial. For this purpose, we used the method of successive approximations, as well as linearization of the equations with respect to the absolute distribution of Fermi --- Dirac electrons and the law of conservation of the number of particles. The statement of the problem described above makes it possible to obtain an analytical solution for the distribution function and for the electric field

References

[1] Aliev I.N., Melikyants D.G. On potentials in Londons electrodynamics. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2016, no. 2, pp. 42–50 (in Russ.). DOI: 10.18698/1812-3368-2016-2-42-50

[2] Aliev I.N., Kopylov I.S. Use of Dirac monopoles formalism in some magnetism problems. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2015, no. 6, pp. 25–39 (in Russ.). DOI: 10.18698/1812-3368-2015-6-25-39

[3] Aliev I.N., Samedova Z.A. The behavior of an electric dipole in a pulsating field. Elektromagnitnye volny i elektronnye sistemy [Electromagnetic Waves and Electronic Systems], 2015, vol. 20, no. 8, pp. 59–65 (in Russ.).

[4] Aliev I.N., Melikyants D.G. Poynting and Abraham theorems in the electrodynamics of London superconductors. Vestnik MGOU. Ser.: Fizika–matematika [Bulletin MSRU. Series: Physics and Mathematics], 2015, no. 4, pp. 83–91 (in Russ.). DOI: 10.18384/2310-7251-2015-4-83-91

[5] Morozov A.N., Skripkin A.V. Equilibrium temperature fluctuations of molecular and photonic gases in a spherical microcavity. Russian Physics Journal, 2012, vol. 55, iss. 7, pp. 736–747. DOI: 10.1007/s11182-012-9875-5

[6] Yurchenko S.O., Aliev I.N. On quantization of surface perturbations of ideal fluid in uniform external electric field. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2011, no. 3, pp. 84–89 (in Russ.).

[7] Aliev I.N., Yurchenko S.O. Evolution of perturbations of a charged interface between immiscible inviscid fluids in the interelectrode gap. Fluid Dynamics, 2010, vol. 45, iss. 5, pp. 817–826. DOI: 10.1134/S0015462810050145

[8] Latyshev A.V., Yushkanov A.A. Generation of longitudinal current by a transverse electromagnetic field in classical and quantum plasmas. Plasma Physics Reports, 2015, vol. 41, iss. 9, pp. 715–724. DOI: 10.1134/S1063780X1509007X

[9] Latyshev A.V., Yushkanov A.A. Nonlinear longitudinal current in the Maxwellian plasma generated under the action of a transverse electromagnetic wave. Fluid Dynamics, 2015, vol. 50, iss. 6, pp. 820–827. DOI: 10.1134/S0015462815060125

[10] Vlasov A.A. The vibrational properties of an electron gas. Sov. Phys. Usp., 1968, no. 10, pp. 721–733. DOI: 10.1070/PU1968v010n06ABEH003709

[11] Landau L.D. O kolebaniyakh elektronnoy plazmy. T. 2 [On oscillations of electron plasma. Vol. 2]. Moscow, Nauka Publ., 1969. Pp. 7–25.

[12] Latyshev A.V., Yushkanov A.A., Fortov V.E., ed. Analiticheskoe reshenie zadachi o povedenii vyrozhdennoy elektronnoy plazmy. Entsiklopediya nizkotemperaturnoy plazmy. T. VII-I. Matematicheskoe modelirovanie v nizkotemperaturnoy plazme [Analytical solution of the problem on the behavior of degenerate plasma. In: Encyclopedia of low-temperature plasma. Vol. VII-I. Mathematical simulation in low-temperature plasma]. Moscow, Yanus-K, 2008. Pp. 159−177.

[13] Latyshev A.V., Lesskis A.G., Yushkanov A.A. Exact solution to the behavior of the electron plasma in a metal layer in an alternating electric field. Theoretical and Mathematical Physics, 1992, vol. 90, iss. 2, pp. 119–126. DOI: 10.1007/BF01028435