|

Applicability Indicators and Identification Techniques for a Nonlinear Maxwell-Type Elasto-Viscoplastic Model using Multi-Step Creep Curves

Authors: Khokhlov A.V. Published: 05.12.2018
Published in issue: #6(81)/2018  
DOI: 10.18698/1812-3368-2018-6-92-112

 
Category: Physics | Chapter: Condensed Matter Physics  
Keywords: viscoplasticity, viscoelasticity, physical non-linearity, material functions, creep rate, plastic strain, applicability indicators, unloading, creep recovery curves, material functions

A physically non-linear Maxwell-type constitutive relation with two material functions for non-aging rheonomous materials is studied analytically in order to elucidate the set of basic rheological phenomena that it simulates, to enclose its application field, to obtain necessary phenomenological restrictions which should be imposed on its material functions and to develop identification techniques. General properties and characteristic features of creep curves produced by the relation with arbitrary material functions under arbitrary multi-step uni-axial loadings are analyzed. The analysis reveals several attributes of the theoretic creep curves that can be employed as the relation feasibility indicators which are convenient for check using test data of a material. Three effective general identification techniques are developed. The first one is based on a set of creep and recovery tests at various stress levels and implies measurement of two strain magnitudes in each test. The second one is based on a single creep test under multi-step loading with growing stress levels. The third one is based on a single creep test under multi-step loading with growing stress levels alternated with unloading to zero stress and rest periods. The explicit expressions are derived in each case to determine the material functions values at arbitrarily chosen points in stress domain via minimal number of measured strain magnitudes. The identification techniques proposed herein enable separate and direct evaluation of the material functions values at a chosen points via test data escaping error accumulation. The techniques don't require any prescribed form of approximation and any kind of least square deviation minimization to determine its parameters; they don't require to solve a set of non-linear equations (its solution we have constructed analytically) and to involve iterative procedures or recurrent formulas. A number of the identification technique versions are considered and their advantages and shortcomings are discussed

The work was carried out with the state financial support of the RFBR (grant no. 17-08-01146_а)

References

[1] Kennedy A.J. Processes of creep and fatigue in metals. Edinburgh, London, Olyver and Boyd, 1962. 480 p.

[2] Rabotnov Yu.N. Polzuchest elementov konstruktsiy [Creep problems in structural members]. Moscow, Nauka Publ., 1966. 752 p.

[3] Bugakov I.I. Polzuchest polimernykh materialov [Creep of polymers]. Moscow, Nauka Publ., 1973. 287 p.

[4] Shesterikov S.A., Lokoshchenko A.M. Polzuchest i dlitelnaya prochnost metallov. Itogi nauki i tekh. Ser. Mekh. deformiruem. tverd. tela. T. 13 [Creep and long-term strength of metals. In: Results of science and technology. Ser. Mechanics of deformable solid body. Vol. 13]. Moscow, AN SSSR. VINITI Publ., 1980. Pp. 3–104.

[5] Malinin N.N. Raschety na polzuchest elementov mashinostroitelnykh konstruktsiy [Creep calculation of machine-building construction parts]. Moscow, Mashinostroenie Publ., 1981. 221 p.

[6] Gokhfeld D.A., Sadakov O.S. Plastichnost i polzuchest elementov konstruktsiy pri povtornykh nagruzheniyakh [Plasticity and creep of construction elements under repeated loading]. Moscow, Mashinostroenie Publ., 1984. 256 p.

[7] Nikitenko A.F. Polzuchest i dlitelnaya prochnost metallicheskikh materialov [Plasticity and creep in structural elements under repeated loading]. Novosibirsk, NGASU Publ., 1997. 278 p.

[8] Betten J. Creep mechanics. Berlin, Heidelberg, Springer, 2008. 367 p.

[9] Lakes R.S. Viscoelastic materials. Cambridge University Press., 2009. 461 p.

[10] Radchenko V.P., Kichaev P.E. Energeticheskaya kontseptsiya polzuchesti i vibropolzuchesti metallov [Energy concept of creep and vibrocreep]. Samara, SamGTU Publ., 2011. 157 p.

[11] Bergstrom J.S. Mechanics of solid polymers. Theory and computational modeling. Elsevier, William Andrew Publ., 2015. 520 p.

[12] Lokoshchenko A.M. Polzuchest i dlitelnaya prochnost metallov [Creep and long-term strength of metals]. Moscow, Fizmatlit Publ., 2016. 504 p.

[13] Fatemi A., Yang L. Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials. Int. J. Fatigue, 1998, vol. 20, iss. 1, pp. 9–34. DOI: 10.1016/S0142-1123(97)00081-9

[14] Launay A., Maitournam M.H., Marco Y., Raoult I., Szmytka F. Cyclic behaviour of short glass fibre reinforced polyamide: experimental study and constitutive equations. Int. J. Plasticity, 2011, vol. 27, iss. 8, pp. 1267–1293. DOI: 10.1016/j.ijplas.2011.02.005

[15] Darabi M.K., Al-Rub R.K.A., Masad E.A., Huang C.-W., Little D.N. A modified viscoplastic model to predict the permanent deformation of asphaltic materials under cyclic-compression loading at high temperatures. Int. J. Plasticity, 2012, vol. 35, pp. 100–134. DOI: 10.1016/j.ijplas.2012.03.001

[16] Bykov D.L., Kazakov A.V., Peleshko V.A., Konovalov D.N., Melnikov V.P., Milyokhin Y.M., Sadovnichii D.N. Law of damage accumulation and fracture criteria in highly filled polymer materials. Mech. Solids, 2014, vol. 49, iss. 5, pp. 543–560. DOI: 10.3103/S0025654414050069

[17] Khokhlov A.V. Analysis of creep curves general properties under step loading generated by the Rabotnov nonlinear relation for viscoelastic plastic materials. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2017, no. 3, pp. 93–123 (in Russ.). DOI: 10.18698/1812-3368-2017-3-93-123

[18] Khokhlov A.V. Analysis of creep curves produced by the linear viscoelasticity theory under cyclic stepwise loadings. Vestn. Sam. Gos. Tekh. Univ. Ser. Fiz.-mat. nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2017, vol. 21, no. 2, pp. 326–361 (in Russ.). DOI: 10.14498/vsgtu1533

[19] Khokhlov A.V. The nonlinear Maxwell-type viscoelastoplastic model: properties of creep curves at piecewise-constant stress and criterion for plastic strain accumulation. Mashinostroenie i inzhenernoe obrazovanie, 2016, no. 3, pp. 55–68 (in Russ.).

[20] Khokhlov A.V. Properties of a nonlinear viscoelastoplastic model of Maxwell type with two material functions. Moscow Univ. Mech. Bull., 2016, vol. 71, no. 6, pp. 132–136. DOI: 10.3103/S0027133016060029

[21] Khokhlov A.V. Long-term strength curves generated by the nonlinear Maxwell-type model for viscoelastoplastic materials and the linear damage rule under step loading. Vestn. Sam. Gos. Tekh. Univ. Ser. Fiz.-mat. nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2016, vol. 20, no. 3, pp. 524–543 (in Russ.). DOI: 10.14498/vsgtu1512

[22] Khokhlov A.V. Nonlinear Maxwell-type elastoviscoplastic model: general properties of stress relaxation curves and restrictions on the material functions. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2017, no. 6, pp. 31–55 (in Russ.). DOI: 10.18698/1812-3368-2017-6-31-55

[23] Khokhlov A.V. Properties of stress-strain curves generated by the nonlinear maxwell-type viscoelastoplastic model at constant stress rates. Mashinostroenie i inzhenernoe obrazovanie, 2017, no. 1, pp. 57–71 (in Russ.).

[24] Khokhlov A.V. The nonlinear Maxwell-type model for viscoelastoplastic materials: simulation of temperature influence on creep, relaxation and strain-stress curves. Vestn. Sam. Gos. Tekh. Univ. Ser. Fiz.-mat. nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2017, vol. 21, no. 1, pp. 160–179 (in Russ.). DOI: 10.14498/vsgtu1524

[25] Khokhlov A.V. Nonlinear Maxwell-type viscoelastoplastic model: rate of plastic strain accumulation under cyclic loadings. Deformatsiya i razrushenie materialov, 2017, no. 7, pp. 7–19 (in Russ.).

[26] Khokhlov A.V. I Identification methods of Maxwell-type nonlinear viscoelastoplastic model, based on creep curves with initial ramp loading. Part II. Methods. Deformatsiya i razrushenie materialov, 2017, no. 10, pp. 2–9 (in Russ.).

[27] Khokhlov A.V. Properties of stress-strain curves generated by the nonlinear Maxwell-type viscoelastoplastic model under loading and unloading at constant stress rates. Vestn. Sam. Gos. Tekh. Univ. Ser. Fiz.-mat. nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2018, vol. 22, no. 2, pp. 293–324 (in Russ.).

[28] Takagi H., Dao M., Fujiwara M. Prediction of the constitutive equation for uniaxial creep of a power-law material through instrumented microindentation testing and modeling. Mater. Trans., 2014, vol. 55, iss. 2, pp. 275–284. DOI: 10.2320/matertrans.M2013370

[29] Petukhov D.S., Keller I.E. Dual plane problems for creeping flow of power-law incompressible medium. Vestn. Sam. Gos. Tekh. Univ. Ser. Fiz.-mat. nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2016, vol. 20, no. 3, pp. 496–507 (in Russ.). DOI: 10.14498/vsgtu1508

[30] Kaybyshev O.A. Sverkhplastichnost promyshlennykh splavov [Superplasticity of industrial alloys]. Moscow, Metallurgiya Publ., 1984. 264 p.

[31] Nieh T.G., Wadsworth J., Sherby O.D. Superplasticity in metals and ceramics. Cambridge, Cambridge Univ. Press, 1997. 287 p.

[32] Padmanabhan K.A., Vasin R.A., Enikeev F.U. Superplastic flow: phenomenology and mechanics. Springer, 2001. 363 p.

[33] Segal V.M., Beyerlein I.J., Tome C.N., Chuvildeev V.N., Kopylov V.I. Fundamentals and engineering of severe plastic deformation. New York, Nova Science Publ. Inc., 2010. 542 p.

[34] Cao Y. Determination of the creep exponent of a power-law creep solid using indentation tests. Mech. Time-Depend. Mater., 2007, vol. 11, iss. 2, pp. 159–172. DOI: 10.1007/s11043-007-9033-6

[35] Megahed M., Ponter A.R.S., Morrison C.J. An experimental and theoretical investigation into the creep properties of a simple structure of 316 stainless steel. Int. J. Mech. Sci., 1984, vol. 26, iss. 3, pp. 149–164. DOI: 10.1016/0020-7403(84)90050-X

[36] Enikeev F.U. Experimental evaluation of speed sensitivity of superplastic material in strongly nonuniform deflected mode. Zavodskaya laboratoriya. Diagnostika materialov [Industrial Laboratory. Diagnostics of Materials], 2007, vol. 73, no. 10, pp. 44–50 (in Russ.).

[37] Radchenko V.P., Shapievskiy D.V. Mathematical model of creep for a microinhomogeneous nonlinearly elastic material. J. Appl. Mech. Tech. Phys., 2008, vol. 49, iss. 3, pp. 478–483. DOI: 10.1007/s10808-008-0064-9

[38] Naumenko K., Altenbach H., Gorash Y. Creep analysis with a stress range dependent constitutive model. Arch. Appl. Mech., 2009, vol. 79, iss. 6-7, pp. 619–630. DOI: 10.1007/s00419-008-0287-5

[39] Lu L.Y., Lin G.L., Shih M.H. An experimental study on a generalized Maxwell model for nonlinear viscoelastic dampers used in seismic isolation. Eng. Struct., 2012, vol. 34, pp. 111–123. DOI: 10.1016/j.engstruct.2011.09.012

[40] Dandrea J., Lakes R.S. Creep and creep recovery of cast aluminum alloys. Mech. Time-Depend. Mater., 2009, vol. 13, pp. 303–315. DOI: 10.1007/s11043-009-9089-6

[41] Melnis A.E., Layzan Ya.B. Nonlinear creep of human compact bone tissue upon stretching. Polymer Mechanics, 1978, vol. 14, iss. 1, pp. 82–84. DOI: 10.1007/BF00859565

[42] Radchenko V.P., Samarin Yu.P. Effect of creep on the elastic deformation of a laminar composite. Mech. Compos. Mater., 1983, vol. 19, iss. 2, pp. 162–168. DOI: 10.1007/BF00604218

[43] Radchenko V.P., Shapievskiy D.V. Drift of elastic deformation due to creep for nonlinear elastic materials. Vestn. Sam. Gos. Tekh. Univ. Ser. Fiz.-mat. nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2006, vol. 43, pp. 99–106 (in Russ.). DOI: 10.14498/vsgtu458

[44] Radchenko V.P., Andreeva E.A. On drift and memory effect of nonlinear elastic strain arising due to creep for micronon-uniform materials in conditions of linear stress. Vestn. Sam. Gos. Tekh. Univ. Ser. Fiz.-mat. nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], vol. 19, no. 2, pp. 72–77 (in Russ.). DOI: 10.14498/vsgtu712

[45] Khokhlov A.V. Asymptotic commutativity of creep curves at piecewise-constant stress produced by the linear viscoelasticity theory. Mashinostroenie i inzhenernoe obrazovanie, 2016, no. 1, pp. 70–82 (in Russ.).