|

Electric Field Influence on the Recombination Luminescence of the Colloidal Silver Sulfide Quantum Dots

Authors: Daibagya D.S., Ambrozevich S.A., Perepelitsa A.S., Zakharchuk I.A., Smirnov M.S., Ovchinnikov O.V., Aslanov S.V., Osadchenko A.V., Selyukov A.S.  Published: 04.07.2023
Published in issue: #3(108)/2023  
DOI: 10.18698/1812-3368-2023-3-100-117

 
Category: Physics | Chapter: Crystallography, Physics of Crystals  
Keywords: recombination luminescence, silver sulfide, quantum dots, electric field, photodegradation

Abstract

The paper studies the effect of external electric field on the optical properties of the spherical Ag2S quantum dots. Colloidal Ag2S nanoparticles passivated with 2-mercaptopropionic acid were obtained by photoinduced synthesis in the ethylene glycol. The nanoparticles shape and characteristic size were determined using the transmission electron microscopy. To analyze the external electric field influence, a series of samples was prepared based on the optically passive polymer film, where the nanoparticles were embedded. The films were placed between two glasses coated with the transparent electrodes based on the indium tin oxide (ITO). Intensity value of the external electric field created in such structures reached 500 kV/cm. The photoluminescence signal was registered using the CCD fiber spectrometer with spectral resolution of 1.16 nm. Spectrally resolved nanoparticles photoluminescence kinetics was measured by time-corre-lated counting of the separate photons. It was found that the presence of a field led to an increase in intensity and rate of the photoluminescence relaxation due to the surface states. This fact is related to acceleration of the free holes transportation to the recombination centers in the external electric field. It is shown that under long-term exposure to laser radiation with a wavelength of 405 nm and the average power of 5 mW, the nanocrystal photoluminescent properties could degrade, as it occurs due to formation of new centers of non-radiative recombination and photoionization of the quantum dots

Please cite this article in English as:

Daibagya D.S., Ambrozevich S.A., Perepelitsa A.S., et al. Electric field influence on the recombination luminescence of the colloidal silver sulfide quantum dots. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2023, no. 3 (108), pp. 100--117 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2023-3-100-117

References

[1] Yashin M.M., Yurasov A.N., Ganshina E.A., et al. Simulation of the spectra of the transverse Kerr effect of magnetic nanocomposites CoFeZr--Al2O3. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2019, no. 5 (86), pp. 63--72. DOI: https://doi.org/10.18698/1812-3368-2019-5-63-72

[2] Ilyasov V.V., Ershov I.V., Holodova O.M., et al. Electronic structure and itinerant magnetism of hydrogenated graphene nanofilms. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2019, no. 3 (84), pp. 60--69. DOI: https://doi.org/10.18698/1812-3368-2019-3-60-69

[3] Vitukhnovsky A.G., Chubich D.A., Eliseev S.P., et al. Advantages of STED-inspired 3D direct laser writing for fabrication of hybrid nanostructures. J. Russ. Laser. Res., 2017, vol. 38, no. 4, pp. 375--382. DOI: https://doi.org/10.1007/s10946-017-9656-2

[4] Swami O.P., Kumar V., Suthar B., et al. A theoretical study of light soliton produced by semiconductor quantum dot waveguides and propagation in optical fibers. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2019, no. 4 (85), pp. 89--102. DOI: https://doi.org/10.18698/1812-3368-2019-4-89-102

[5] Oleynikov V.A., Sukhanova A.V., Nabiev I.R. Fluorescent semiconductor nanocrystals in biology and medicine. Rossiyskie nanotekhnologii, 2007, vol. 2, no. 1-2, pp. 160--173 (in Russ.).

[6] Vashchenko A.A., Osadchenko A.V., Selyukov A.S., et al. Electroluminescence of coumarin-based dyes. Bull. Lebedev Phys. Inst., 2022, vol. 49, no. 3, pp. 74--77. DOI: https://doi.org/10.3103/S106833562203006X

[7] Correa Santos D., Vieira Marques M.F. Blue light polymeric emitters for the development of OLED devices. J. Mater. Sci.: Mater. Electron., 2022, vol. 33, no. 16, pp. 12529--12565. DOI: https://doi.org/10.1007/s10854-022-08333-3

[8] Correa Santos D., Vieira Marques M.F. Blue light polymeric emitters for the development of OLED devices. J. Mater. Sci.: Mater. Electron., 2022, vol. 33, no. 16, pp. 12529--12565. DOI: https://doi.org/10.1007/s10854-022-08333-3

[9] Bozyigit D., Yarema O., Wood V. Origins of low quantum efficiencies in quantum dot LEDs. Adv. Funct. Mater., 2013, vol. 23, iss. 24, pp. 3024--3029. DOI: https://doi.org/10.1002/adfm.201203191

[10] Selyukov A.S., Vitukhnovskii A.G., Lebedev V.S., et al. Electroluminescence of colloidal quasi-two-dimensional semiconducting CdSe nanostructures in a hybrid light-emitting diode. J. Exp. Theor. Phys., 2015, vol. 120, no. 4, pp. 595--606. DOI: https://doi.org/10.1134/S1063776115040238

[11] Vashchenko A.A., Vitukhnovskii A.G., Lebedev V.S., et al. Organic light-emitting diode with an emitter based on a planar layer of CdSe semiconductor nanoplatelets. JETP Lett., 2014, vol. 100, no. 2, pp. 86--90. DOI: https://doi.org/10.1134/S0021364014140124

[12] Skurlov I.D., Ponomareva E.A., Ismagilov A.O., et al. Size dependence of the resonant third-order nonlinear refraction of colloidal PbS quantum dots. Photonics, 2020, vol. 7, iss. 2, art. 39. DOI: https://doi.org/10.3390/photonics7020039

[13] Selyukov A.S., Isaev A.A., Vitukhnovskiy A.G., et al. Nonlinear optical response of planar and spherical CdSe nanocrystals. Semiconductors, 2016, vol. 50, no. 7, pp. 947--950. DOI: https://doi.org/10.1134/S1063782616070228

[14] Zvyagin A.I., Smirnov M.S., Ovchinnikov O.V., et al. Nonlinear optical properties of hybrid associates of Azure A molecules with ZN0.5Cd0.5S colloidal quantum dots. Bull. Lebedev Phys. Inst., 2019, vol. 46, no. 3, pp. 93--96. DOI: https://doi.org/10.3103/S1068335619030059

[15] Zvyagin A.I., Chevychelova T.A., Grevtseva I.G., et al. Nonlinear refraction in colloidal silver sulfide quantum dots. J. Russ. Laser. Res., 2020, vol. 41, no. 6, pp. 670--680. DOI: https://doi.org/10.1007/s10946-020-09923-4

[16] Kondratenko T.S., Grevtseva I.G., Zvyagin A.I., et al. Luminescence and nonlinear optical properties of hybrid associates of Ag2S quantum dots with molecules of thiazine dyes. Opt. Spectrosc., 2018, vol. 124, no. 5, pp. 673--680. DOI: https://doi.org/10.1134/S0030400X18050090

[17] Ganeev R.A., Ryasnyansky A.I., Tugushev R.I., et al. Investigation of nonlinear refraction and nonlinear absorption of semiconductor nanoparticle solutions prepared by laser ablation. J. Opt. A: Pure Appl. Opt., 2003, vol. 5, no. 4, art. 409. DOI: https://doi.org/10.1088/1464-4258/5/4/317

[18] Vitukhnovsky A.G., Selyukov A.S., Solovey V.R., et al. Photoluminescence of CdTe colloidal quantum wells in external electric field. J. Lumin., 2017, vol. 186, pp. 194--198. DOI: https://doi.org/10.1016/j.jlumin.2017.02.041

[19] Bozyigit D., Yarema O., Wood V. Origins of low quantum efficiencies in quantum dot LEDs. Adv. Funct. Mater., 2013, vol. 23, iss. 24, pp. 3024--3029. DOI: https://doi.org/10.1002/adfm.201203191

[20] Gurinovich L.I., Lyutich A.A., Stupak A.P., et al. Luminescence in quantum-confined cadmium selenide nanocrystals and nanorods in external electric fields. Semiconductors, 2009, vol. 43, no. 8, pp. 1008--1016. DOI: https://doi.org/10.1134/S1063782609080090

[21] Ohshima R., Nakabayashi T., Kobayashi Y., et al. External electric field effects on state energy and photoexcitation dynamics of water-soluble CdTe nanoparticles. J. Phys. Chem. C, 2011, vol. 115, iss. 31, pp. 15274--15281. DOI: https://doi.org/10.1021/jp204660m

[22] Muravitskaya A.O., Gurinovich L.I., Prudnikov A.V., et al. The effect of an external electric field on photoluminescence of CdSe colloidal nanoparticles of different topologies. Opt. Spectrosc., 2017, vol. 122, no. 1, pp. 83--87. DOI: https://doi.org/10.1134/S0030400X17010192

[23] Jin C.Y., Kojima O., Kita T., et al. Vertical-geometry all-optical switches based on InAs/GaAs quantum dots in a cavity. Appl. Phys. Lett., 2009, vol. 95, iss. 2, art. 021109. DOI: https://doi.org/10.1063/1.3180704

[24] Ovchinnikov O.V., Aslanov S.V., Smirnov M.S., et al. Photostimulated control of luminescence quantum yield for colloidal Ag2S/2-MPA quantum dots. RSC Adv., 2019, vol. 9, iss. 64, pp. 37312--37320. DOI: https://doi.org/10.1039/C9RA07047H

[25] Smirnov M.S., Ovchinnikov O.V. IR luminescence mechanism in colloidal Ag2S quantum dots. J. Lumin., 2020, vol. 227, art. 117526. DOI: https://doi.org/10.1016/j.jlumin.2020.117526

[26] Ovchinnikov O.V., Smirnov M.S., Latyshev A.N., et al. Photostimulated formation of sensitized anti-Stokes luminescence centers in AgCl(I) microcrystals. Opt. Spectrosc., 2007, vol. 103, no. 3, pp. 482--489. DOI: https://doi.org/10.1134/S0030400X07090172

[27] Ievlev V.M., Latyshev A.N., Ovchinnikov O.V., et al. Photostimulated formation of anti-Stokes luminescence centers in ionic covalent crystals. Dokl. Phys., 2006, vol. 51, no. 8, pp. 400--402. DOI: https://doi.org/10.1134/S1028335806080027

[28] Latyshev A.N., Ovchinnikov O.V., Smirnov M.S. et al. Spectrally controlled atom-by-atom photoassembly of silver clusters on the surface of ionic-covalent crystals. Opt. Spectrosc., 2010, vol. 109, no. 5, pp. 719--728. DOI: https://doi.org/10.1134/S0030400X10110111

[29] Ovchinnikov O.V., Grevtseva I.G., Smirnov M.S., et al. Reverse photodegradation of infrared luminescence of colloidal Ag2S quantum dots. J. Lumin., 2019, vol. 207, pp. 626--632. DOI: https://doi.org/10.1016/j.jlumin.2018.12.019

[30] Rempel S.V., Kuznetsova Yu.V., Gerasimov E.Yu., et al. The irradiation influence on the properties of silver sulfide (Ag2S) colloidal nanoparticles. Phys. Solid State, 2017, vol. 59, no. 8, pp. 1629--1636. DOI: https://doi.org/10.1134/S1063783417080224

[31] Kondratenko T., Ovchinnikov O., Grevtseva I., et al. Thioglycolic acid FTIR spectra on Ag2S quantum dots interfaces. Materials, 2020, vol. 13, iss. 4, art. 909. DOI: https://doi.org/10.3390/ma13040909

[32] Ovchinnikov O.V., Grevtseva I.G., Smirnov M.S., et al. Effect of thioglycolic acid molecules on luminescence properties of Ag2S quantum dots. Opt. Quant. Electron., 2020, vol. 52, p. 198. DOI: https://doi.org/10.1007/s11082-020-02314-8

[33] Ovchinnikov O.V., Perepelitsa A.S., Smirnov M.S., et al. Control the shallow trap states concentration during the formation of luminescent Ag2S and Ag2S/SiO2 core/shell quantum dots. J. Lumin., 2022, vol. 243, art. 118616. DOI: https://doi.org/10.1016/j.jlumin.2021.118616

[34] Ovchinnikov O., Aslanov S., Smirnov M., et al. Colloidal Ag2S/SiO2 core/shell quantum dots with IR luminescence. Opt. Mater. Express., 2021, vol. 11, iss. 1, pp. 89--104. DOI: https://doi.org/10.1364/OME.411432

[35] Gulyaev D.V., Zhuravlev K.S. Mechanism of the effect of the electric field of a surface acoustic wave on the low-temperature photoluminescence kinetics in type-II GaAs/AlAs superlattices. Semiconductors, 2007, vol. 41, no. 7, pp. 205--210. DOI: https://doi.org/10.1134/S1063782607020170