|

On the Metric Structure of Space - Time

Authors: Konstantinov M.Yu. Published: 08.02.2015
Published in issue: #1(58)/2015  
DOI: 10.18698/1812-3368-2015-1-63-68

 
Category: Physics  
Keywords: pseudo-Riemannian metric, Hawking hypothesis, structure space-time, dark matter

The Hawking’s hypothesis about Euclidean nature of space-time is analyzed using correspondence pseudo-Riemannian metric of Lorentz signature and arbitrary timelike vector field with a Euclidean metric. It has been shown that in the framework of the Hawking’s hypothesis this correspondence can be considered as a local symmetry breaking of Euclidean space and leads naturally to polymetric models of space-time. The appearance of exotic dark matter and the possible existence of particles (and fields) which can propagates with superlight velocities are the consequence of such models.

References

[1] Landau L.D., Lifshits E.M. Teoreticheskaya fizika v 10 t. T. 2. Teoriya polya [Theoretical physics. In 10 volums. Vol. 2. The theory of field]. Moscow, Fizmatlit Publ., 2006. 534 p. (Eng. ed.: Landau L.D., Lifshitz E.M. Course of theoretical physics. Vol. 2. The Classical Theory of Fields. 4th ed. Butterworth-Heinemann. 1975.).

[2] Misner C.W., Thorne K.S., Wheeler J.A. Gravitation. Vol. 1-3. San Francisco, W.H. Freeman and Company Limited, 1973. 1279 р. (Russ. ed.: Mizner Ch., Torn K., Uiler Dzh. A. Gravitatsiya. Per. s angl. Moscow, Mir Publ., 1977. 525 p.).

[3] Postnikov M.M. Vvedenie v teoriyu Morsa [Introduction to Morse theory]. Moscow, Nauka Publ., 1971. 567 p.

[4] Bishop R.L., Crittenden R. Geometry of manifolds. N.Y., Academic Press, 1964. 265 p. (Russ. ed.: Bishop R., Krittenden R. Geometriya mnogoobraziy. Per s angl. Moscow, Mir Publ., 1967. 335 p.

[5] Hawking S.W. Euclidian quantum gravity. In Cargese 1978 lectures: Recent Developments in Gravitation. Ed.

[6] Deser S., Levy M. N.Y., Plenum Press, 1978.

[7] Mitskevich N.V. Otobrazhenie psevdorimanovykh prostranstv na rimanovy v obshchey teorii otnositel’nosti. Kn.: Gravitatsiya i teoriya otnositel’nosti. [The mapping of pseudo-Riemannian spaces on Riemannian in general relativity theory. In book: Gravitation and the theory of relativity]. Kazan’, Kazanskiy Gosudarstvennyy Uni. Publ., 1982, pp. 115-119.

[8] Konstantinov M.Yu. Topologicheskie perekhody v klassicheskoy teorii gravitatsii: skalyarno-tenzornyy formalizm. Kn.: Problemy teorii gravitatsii i elementarnykh chastits; pod. red. K.P. Stanyukovich, V.N. Mel’nikov [Topological changes in the classical theory of gravitation: scalar-tensor formalism. In book: Problems of the theory of gravitation and elementary particles. Ed. Stanyukovitch K.P., Melnikov V.N.]. Moscow, Energoatomizdat Publ., 1985, iss. 16, pp. 148-157.

[9] Geroch R. Faster Than Light? General Relativity and Quantum Cosmology, 2010, pp. 1-13. Available at: http:// arxiv.org/pdf/1005.1614.pdf (accessed 27.09.2014).