Motion of a Charged Particle in the Electromagnetic Field of a Polarization-Modulated Wave in the Presence of a Constant Magnetic Field
Authors: Kudryavtsev D.I., Kopytov G.Ph., Brazhko V.A. | Published: 12.11.2023 |
Published in issue: #5(110)/2023 | |
DOI: 10.18698/1812-3368-2023-5-73-89 | |
Category: Physics | Chapter: Laser Physics | |
Keywords: plane electromagnetic wave, polarization modulation, charged particle, magnetic field, high-power laser radiation |
Abstract
This article continues the study of the motion and radiation of a charged particle in the field of a high-intensity polarization-modulated wave already in the presence of an external constant magnetic field. Formulas for the average kinetic energy of a particle are obtained without considering the rest energy in the case of circular and linear polarization of a modulated electromagnetic wave. The peculiarity of the energy characteristics of a charged particle was demonstrated on the graph of the dependence of the average kinetic energy on the magnitude of the external magnetic field. The solution of the equation of motion of a charged particle in a given combination of fields is of interest in studies of the interaction between laser radiation and plasma, in the development of multifrequency lasers and in laser modulation technology
Please cite this article as:
Kudryavtsev D.I., Kopytov G.Ph., Brazhko V.A. Motion of a charged particle in the electromagnetic field of a polarization-modulated wave in the presence of a constant magnetic field. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2023, no. 5 (110), pp. 73--89. DOI: https://doi.org/10.18698/1812-3368-2023-5-73-89
References
[1] Wong L.J., Hong K.-H., Carbajo S., et al. Laser-induced linear-field particle acceleration in free space. Sci. Rep., 2017, vol. 7, no. 1, art. 11159. DOI: https://doi.org/10.1038/s41598-017-11547-9
[2] Yoon J.W., Kim Y.G., Choi I.W., et al. Realization of laser intensity over 1023 W/cm2. Optica, 2021, vol. 8, iss. 5, pp. 630--635. DOI: https://doi.org/10.1364/OPTICA.420520
[3] Pompili R., Anania M.P., Bisesto F., et al. Ultrafast evolution of electric fields from high-intensity laser-matter interactions. Sci. Rep., 2018, vol. 8, no. 1, art. 3243. DOI: https://doi.org/10.1038/s41598-018-21711-4
[4] Chen Z.-Y., Pukhov A. Plasma-based polarization modulator for high-intensity lasers. Phys. Plasmas, 2016, vol. 23, iss. 12, art. 123107. DOI: https://doi.org/10.1063/1.4971232
[5] Yu L.-L., Zhao Y., Qian L.-J., et al. Plasma optical modulators for intense lasers. Nat. Commun., 2016, vol. 7, no. 1, art. 11893. DOI: https://doi.org/10.1038/ncomms11893
[6] Nahear R., Bach Y., Noach S. Electro optic Tm:YAP/KLTN laser using polarization modulation. Opt. Laser Technol., 2022, vol. 146, art. 107548. DOI: https://doi.org/10.1016/j.optlastec.2021.107548
[7] Dong W., Huang Y., Zhang Z., et al. Fluorescence emission difference microscopy based on polarization modulation. J. Innov. Opt. Health Sci., 2022, vol. 15, iss. 5, art. 2250034. DOI: https://doi.org/10.1142/S1793545822500341
[8] Gupta V.K., Kornfield J.A., Ferencz A., et al. Controlling molecular order in "hairy-rod" Langmuir --- Blodgett films: a polarization-modulation microscopy study. Science, 1994, vol. 265, iss. 5174, pp. 940--942. DOI: https://doi.org/10.1126/science.265.5174.940
[9] Popovsky V.V., Kuzminich I.V. Method of polarization modulation and multiplexing in fiber-optic communication lines. Vestnik nauchnykh konferentsiy [Bulletin of Scientific Conferences], 2016, no. 10-2, pp. 94--100 (in Russ.).
[10] Knyazkov A.V. Polarization-optical modulation of light. Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki [St. Petersburg State Polytechnical University Journal. Physics and Mathematics], 2013, no. 3, pp. 156--161 (in Russ.).
[11] Lopez-Ortega A., Zapata-Herrera M., Maccaferri N., et al. Enhanced magnetic modulation of light polarization exploiting hybridization with multipolar dark plasmons in magnetoplasmonic nanocavities. Light. Sci. Appl., 2020, vol. 9, art. 49. DOI: https://doi.org/10.1038/s41377-020-0285-0
[12] Kopytov G.Ph., Kudryavtsev D.I., Brazhko V.A. The motion of a charged particle in the electromagnetic field of a polarization-modulated wave. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2022, no. 6 (105), pp. 106--122 (in Russ.). DOI: http://dx.doi.org/10.18698/1812-3368-2022-6-106-122
[13] Bashinov A., Gonoskov A., Kim A., et al. Electron acceleration and emission in a field of a plane and converging dipole wave of relativistic amplitudes with the radiation reaction force taken into account. Quantum Electron., 2013, vol. 43, no. 4, pp. 291--299. DOI: https://doi.org/10.1070/QE2013v043n04ABEH015101
[14] Bateman G., Erdein A. Higher transcendental functions. McGraw-Hill, 1953.
[15] Kopytov G.F., Kudryavtsev D.I., Chebotarev S.N. Vliyanie modulyatsii elektromagnitnoy volny na dvizhenie i izluchenie relyativistskoy zaryazhennoy chastitsy [Effect of electromagnetic wave modulation on the motion and radiation of a relativistic charged particle]. Moscow, FIZMATLIT Publ., 2022.