|

Kinetic Inductance of a Single-Walled Carbon Nanotube of Metallic Type

Authors: Erkovich O.S., Ivliev P.A. Published: 22.11.2017
Published in issue: #6(75)/2017  
DOI: 10.18698/1812-3368-2017-6-56-64

 
Category: Physics | Chapter: Physics of Magnetic Phenomena  
Keywords: carbon nanotubes, kinetic inductance, electron density

The study presents the results of theoretical studies of kinetic inductance of a single-walled carbon nanotube of metallic type, taking into account the electron-electron interaction in the approximation of a right circular cylinder. The system under consideration is a cylindrically symmetric potential well with a final height of the wall. As a part of the theory of two-dimensional electron gas response to the external electromagnetic disturbance we obtained kinetic inductance depending on the nanotube diameter, frequency and intensity of the radiation. Findings of the research show that value increases with the increasing frequency, and decreases with the increasing radiation intensity

References

[1] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, vol. 354, pp. 56–58. DOI: 10.1038/354056a0

[2] Qin L.C., Zhao X., Hirahara K., Miyamoto Y., Ando Y., Iijima S. Materials science: The smallest carbon nanotube. Nature, 2000, vol. 408, p. 50. DOI: 10.1038/35040699

[3] Vedernikov A.I., Chaplik A.V. Vibration modes and electron-phonon interaction in semiconductor nanotubes. Semiconductors, 2004, vol. 38, iss. 11, pp. 1316–1322. DOI: 10.1134/1.1823067

[4] Seid-Rzaeva S.M. Energy relaxation of non-equilibrium electrons in nanotube formed by convoluted quantum well. Fizika i tekhnika poluprovodnikov, 2013, vol. 47, iss. 6, pp. 793–796 (in Russ.).

[5] Vedernikov A.A. Simulation of electron gas spatial distribution in nanotube using density functional method. Molodezhnyy nauchno-tekhnicheskiy vestnik, 2013, no. 4 (in Russ.). Available at: http://sntbul.bmstu.ru/doc/566136.html

[6] Eletskiy A.V. Carbon nanotubes and their emission properties. Physics–Uspekhi, 2002, vol. 45, no. 4, pp. 369–402. DOI: 10.1070/PU2002v045n04ABEH001033

[7] Zakharchenko A.A., Petrov B.K. Conductivity of single-walled carbon nanotubes with metallic properties in the free-electron approximation. Vestnik VGTU, 2009, vol. 5, no. 12, pp. 105–109 (in Russ.).

[8] Ivanchenko G.S., Lebedev N.G. Electrical conduction of carbon nanotubes due to the migration of protons over their surface. Physics of the Solid State, 2009, vol. 51, no. 11, p. 2421. DOI: 10.1134/S1063783409110365

[9] Zakharchenko A.A., Petrov B.K. Energy spectrum of single-walled carbon nanotubes of the structural Armchair type in the free-electron approximation. Vestnik VGTU, 2013, vol. 9, no. 3-1, pp. 98–102 (in Russ.).

[10] Sadykov N.R., Skorkin N.A. Effect of a nonstationary electric field with different front profiles on carbon nanotubes. Semiconductors, 2012, vol. 46, iss. 8, pp. 1020–1026. DOI: 10.1134/S1063782612080179

[11] Erkovich O.S., Ivliev P.A. Calculation of electronic density of carbon nanotubes in an external electromagnetic field. Nanomaterialy i nanostruktury — XXI vek [Nanomaterials and Nanostructures — XXI Century], 2016, vol. 7, no. 1, pp. 8–13 (in Russ.).

[12] Ostrovskiy P.M. Conductivity of carbon nanotubes in a longitudinal magnetic field. Journal of Experimental and Theoretical Physics Letters, 2000, vol. 72, iss. 8, pp. 419–421. DOI: 10.1134/1.1335120

[13] Erkovich O.S., Ivliev P.A. Calculation of the magnetic properties of single-walled carbon nanotubes in the framework of density functional theory. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2016, no. 4, pp. 56–64 (in Russ.). DOI: 10.18698/1812-3368-2016-4-56-64

[14] Mende F.F. Role and place of kinetic inductance of charges in classical electrodynamics. Inzhenernaya fizika [Engineering Physics], 2012, no. 11, pp. 10–19 (in Russ.).

[15] Burke P.J., Spielman I.B., Eisenstein J.P., Pfeiffer L.N., West K.W. High frequency conductivity of the high-mobility two-dimensional electron gas. Applied Physics Letters, 2000, vol. 76, iss. 6, pp. 745–747. DOI: 10.1063/1.125881

[16] Semenov A.V., Devyatov A.I., Kupriyanov M.Yu. Theoretical analysis of the operation of the kinetic inductance-based superconducting microwave detector. JETP Letters, 2008, vol. 88, iss. 7, pp. 441–447. DOI: 10.1134/S0021364008190077

[17] Ivliev P.A. Radial electron density distribution of carbon nanotube. Molodezhnyy nauchno-tekhnicheskiy vestnik, 2014, no. 9 (in Russ.). Available at: http://sntbul.bmstu.ru/doc/732012.html