Determination of the Dependence of the Spectrophotometer Zero Line Speed Deviation on the Elution Parameters Alteration

Authors: Stankevich S.V., Lysenko N.K. Published: 11.03.2023
Published in issue: #1(106)/2023  
DOI: 10.18698/1812-3368-2023-1-129-144

Category: Physics | Chapter: Optics  
Keywords: zero line deviation, zero line drift, spectrophotometer, high performance liquid chromatography, monochromaticity, electromagnetic radiation


To identify dependence of the drift rate on the elution parameters alteration (in high-performance liquid chromatography), four samples of chromatograms registered by the Milichrome A-02 liquid microcolumn chromatograph were formed and compared in pairs. This chromatograph was equipped with a two-beam spectrophotometric detector with the following operating spectrum, nm: 210; 220; 230; 240; 250; 260; 280; 300. To determine dependence of the drift rate on the elution parameters, comparison was made of the two samples average drift rates, which differed only in the parameter value under study. Hypothesis about the eluate temperature alteration effect on the drift rate was confirmed at the highest level of confidence. It was established that the drift rate increased in the most (by 26.54 times) precisely with an increase in the temperature by 10 °С. Twofold increase in the eluate rate led to an increase in the average drift rate over the spectrum by 81.65 %, and the twofold increase in the detector measurement interval --- by 33.82 % (despite this, hypothesis of this relationship was taken as false). Along with the temperature, activity of the eluate particles was increasing, and the amount of energy required for the electron transition to the higher energy levels decreased. The problem of drift readings is universal and relevant for many measurement instruments. Drift is caused by systematic alteration in the metrological characteristics of the measurement tool. As a result of the detector electromagnetic radiation energy absorption by particles dissolved in the eluate, such metrological characteristic of the spectrophotometric detector as the radiation intensity changes; and it changes randomly, which in 87.5 % of cases leads to a positive drift, and in 12.5 % --- to the negative drift

Please cite this article in English as:

Stankevich S.V., Lysenko N.K. Determination of the dependence of the spectro-photometer zero line speed deviation on the elution parameters alteration. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2023, no. 1 (106), pp. 129--144 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2023-1-129-144


[1] Kazakov S.V., Chistyakov I.M., Berseneva E.S. Methodical approach for decision-making purposes the periodicity of measuring instruments calibration. Izvestiya Tulskogo gosudarstvennogo universiteta. Tekhnicheskie nauki [News of the Tula State University. Technical Sciences], 2016, no. 6, pp. 3--13 (in Russ.).

[2] Ilin A.S. Bases of dynamic correction of sensitivity coefficients of group of the same sensors (on the example of cosine distribution law). Nauchnoe priborostroenie, 2016, vol. 26, no. 3, pp. 83--94 (in Russ.).

[3] Salit M.L., Turk G.C. A drift correction procedure. Anal. Chem., 1998, vol. 70, iss. 15, pp. 3184--3190. DOI: https://doi.org/10.1021/ac980095b

[4] Owen T. Fundamentals of modern UV-visible spectroscopy. Agilent Technologies, 2000.

[5] Upstone S. Validating UV/visible spectrophotometers. PerkinElmer, 2012.

[6] Chapman II G.B., Gordon W.A. Development of a drift-correction procedure for a direct-reading spectrometer. NASA technical note TN D-8463. Washington D.C, 1977.

[7] Bekker Yu. Khromatografiya. Instrumentalnye metody khromatografii i kapillyarnogo elektroforeza [Chromatography. Instrumental methods of chromatography and capillary electrophoresis]. Moscow, Tekhnosfera Publ., 2009.

[8] Dual beam spectrophotometer: ADI solutions application brief. Available at: https://s1.dtsheet.com/store/data/001788004.pdf?key=7cdbafd01b125c63d674064e0e3885fe&r=1 (accessed: 29.04.2022).

[9] Stolyarov B.V., Savinov I.M., Vitenberg A.G., et al. Prakticheskaya gazovaya i zhidkostnaya khromatografiya [Practical gas and fluid chromatography]. St. Petersburg, SPbSU Publ., 1998.

[10] Leibnitz E., Struppe H.G., eds. Handbuch der Gas-Chromatographie. Chemie, 1967.

[11] Avdeeva A.A. Kontrol szhiganiya gazoobraznogo topliva [Control of gaseous fuel combustion]. Moscow, Energiya Publ., 1971.

[12] Volkov V.L., Zhidkova N.V. Modeling of strapdown navigation system. Sovremennye naukoemkie tekhnologii [Modern High Technologies], 2015, no. 7, pp. 13--18 (in Russ.).

[13] Sharkov I.A., Sharkova O.A., Mekhrengin M.V., et al. [Compensation for temperature drift of fiber optic gyroscope readings]. Sb. tez. II VKMU. Vyp. 1 [Abs. II VKMU. Vol. 1]. St. Petersburg, SPb NRU ITMO, 2013, pp. 131--132 (in Russ.).

[14] Sharkov I.A., Mekhrengin M.V., Rupasov A.V., et al. [Compensation for temperature drift of fiber optic gyroscope readings]. Sb. tez. III VKMU. Vyp. 2 [Abs. III VKMU. Vol. 2]. St. Petersburg, SPb NRU ITMO, 2014, pp. 107--108 (in Russ.).

[15] Baram G., Baram E. Praktikum po VEZhKh na virtualnom khromatografe [Workshop on HPLC on a virtual chromatograph]. Novosibirsk, Ekonova Publ., 2015.

[16] Melnikov M.Ya., Ivanov V.L. Eksperimentalnye metody khimicheskoy kinetiki. Fotokhimiya [Experimental methods of chemical kinetics. Photochemistry]. Moscow, Moscow Univ. Publ., 2004.

[17] Alimarin I.P., Ivanov V.M., eds. Prakticheskoe rukovodstvo po fiziko-khimicheskim metodam analiza [Practical guide to physical and chemical methods of analysis]. Moscow, Moscow Univ. Publ., 1987.

[18] Butikov E.I. Optika [Optics]. St. Petersburg, BKhV-Peterburg Publ., Nevskiy Dialekt Publ., 2003.

[19] Hazel G., Bucholtz F., Aggarwal I.D. Characterization and modeling of drift noise in Fourier transform spectroscopy: implications for signal processing and detection limits. Appl. Opt., 1997, vol. 36, iss. 27, pp. 6751--6759. DOI: https://doi.org/10.1364/ao.36.006751

[20] Oshorov A.V., Savin I.A., Goryachev A.S. Vnutricherepnaya gipertenziya. Rukovodstvo dlya vrachey [Intracranial hypertension. A guide for physicians]. Moscow, NII neyrokhirurgii im. N.N. Burdenko Publ., 2021.

[21] Bykov V.A., Kuznetsov E.V., Pyankov E.S. Reducing the effect of temperature drift in scanning probe microscopes. Izvestiya vuzov. Elektronika [Proceedings of Universities. Electronics], 2010, no. 5, pp. 58--63 (in Russ.).

[22] Krylov A.A., Korniyuk D.V. Technological approaches to zero offset compensation in mems gyroscopes being a part of the inertial measurement unit. Trudy MAI, 2018, no. 103 (in Russ.). Available at: https://trudymai.ru/published.php?ID=100768

[23] Sinyutin E.S., Ruban R.Yu. Development of a measuring installation and a method for estimating the maximum operating time of a metering device for hot and cold water. Inzhenernyy vestnik Dona [Engineering Journal of Don], 2018, no. 4 (in Russ.). Available at: http://ivdon.ru/ru/magazine/archive/n4y2018/5438

[24] Styskin E.L., Itsikson L.B., Braude E.V. Prakticheskaya vysokoeffektivnaya zhidkostnaya khromatografiya [Practical highly effective liquid chromatography]. Moscow, Khimiya Publ., 1986.