Investigation of the PAH and Carbon Nanoparticles Formation Processes in the Ethylene Pyrolysis with the Tetrahydrofuran Addition Behind the Shock Waves

Authors: Drakon A.V., Eremin A.V., Korshunova M.R., Mikheyeva E.Yu. Published: 24.08.2023
Published in issue: #4(109)/2023  
DOI: 10.18698/1812-3368-2023-4-79-107

Category: Physics | Chapter: Thermal Physics and Theoretical Heat Engineering  
Keywords: shock tube, pyrolysis, oxygenated fuels, ethylene, tetrahydrofuran, laser-induced fluorescence, laser extinction, polyaromatic hydrocarbons, soot


Currently, substances are being actively sought that could serve as the alternative fuel or fuel additive reducing formation and emission of the carbon nanoparticles. Here, processes of the polyaromatic hydrocarbons (precursors of the carbon condensed phase formation) and carbon black nanoparticles formation during the ethylene pyrolysis with addition of the tetrahydrofuran were studied by laser-induced fluorescence and laser extinction methods. Spectral dependences of laser-induced fluorescence of the polyaromatic hydrocarbons were obtained by laser-induced fluorescence at various temperatures and pyrolysis stages, and optical density of the reacting gas mixtures at wavelengths of 405 and 633 nm was obtained by laser extinction. Measurements were carried out on a shock tube behind the reflected shock waves in the temperature range of 1,695--2,500 K and pressure range of 2.7--4.1 atm. It is shown that during the ethylene pyrolysis with the tetrahydrofuran addition soot formation process is intensifying, and the temperature range of the carbon nanoparticles formation is expanding. Using the kinetic simulation, it was found that acceleration in the carbon nanoparticles formation was caused by formation of methyl radical and propylene in the tetrahydrofuran pyrolysis

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2020-806 September 29 2020)

Please cite this article in English as:

Drakon A.V., Eremin A.V., Korshunova M.R., et al. Investigation of the PAH and carbon nanoparticles formation processes in the ethylene pyrolysis with the tetrahydrofuran addition behind the shock waves. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2023, no. 4 (109), pp. 79--107 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2023-4-79-107


[1] Lange J.-P., van der Heide E., van Buijtenen J., et al. Furfural --- a promising platform for lignocellulosic biofuels. Chem. Sus. Chem., 2012, vol. 5, iss. 1, pp. 150--166. DOI: https://doi.org/10.1002/cssc.201100648

[2] Luterbache J., Martin Alonso D., Dumesic J. Targeted chemical upgrading of lignocellulosic biomass to platform molecules. Green Chem., 2014, vol. 16, iss. 12, pp. 4816--4838. DOI: https://doi.org/10.1039/C4GC01160K

[3] Yan K., Wu G., Lafleur T., et al. Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renew. Sustain. Energy Rev., 2014, vol. 38, pp. 663--676. DOI: https://doi.org/10.1016/j.rser.2014.07.003

[4] Wang Y., Cui Q., Guan Y., et al. Facile synthesis of furfuryl ethyl ether in high yield via the reductive etherification of furfural in ethanol over Pd/C under mild conditions. Green Chem., 2018, vol. 20, iss. 9, pp. 2110--2117. DOI: https://doi.org/10.1039/C7GC03887A

[5] Ahmad F.B., Kalam M., Zhang Z., et al. Sustainable production of furan-based oxygenated fuel additives from pentose-rich biomass residues. Energy Convers. Manag.: X, 2022, vol. 14, art. 100222. DOI: https://doi.org/10.1016/j.ecmx.2022.100222

[6] Liu Z., Wang J., Nielsen J. Yeast synthetic biology advances biofuel production. Curr. Opin. Microbiol., 2022, vol. 65, pp. 33--39. DOI: https://doi.org/10.1016/j.mib.2021.10.010

[7] Binkova B., Sram R. The genotoxic effect of carcinogenic PAHs, their artificial and environmental mixtures (EOM) on human diploid lung fibroblasts. Mutat. Res.-Fund. Mol. M., 2004, vol. 547, iss. 1-2, pp. 109--121. DOI: https://doi.org/10.1016/j.mrfmmm.2003.12.006

[8] Friedman C., Zhang Y., Selin N. Climate change and emissions impacts on atmospheric PAH transport to the Arctic. Environ. Sci. Technol., 2014, vol. 48, iss. 1, pp. 429--437. DOI: https://doi.org/10.1021/es403098w

[9] Myung C., Park S. Exhaust nanoparticle emissions from internal combustion engines: a review. Int. J. Automot. Technol., 2012, vol. 13, no. 1, pp. 9--22. DOI: https://doi.org/10.1007/s12239-012-0002-y

[10] Markov V.A., Chaynov N.D., Loboda S.S. Physicochemical properties of mixture diesel biofuels with vegetable oil additives and their flammability. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2018, no. 4 (79), pp. 115--128 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2018-4-115-128

[11] Richter H., Howard J. Formation of polycyclic aromatic hydrocarbons and their growth to soot --- a review of chemical reaction pathways. Prog. Energy Combust. Sci., 2000, vol. 26, iss. 4-6, pp. 565--608. DOI: https://doi.org/10.1016/S0360-1285(00)00009-5

[12] Mueller M., Blanquart G., Pitsch H. Hybrid Method of Moments for modeling soot formation and growth. Combust. Flame, 2009, vol. 156, iss. 6, pp. 1143--1155. DOI: https://doi.org/10.1016/j.combustflame.2009.01.025

[13] Yapp E.K.Y., Chen D., Akroyd J., et al. Numerical simulation and parametric sensitivity study of particle size distributions in a burner-stabilised stagnation flame. Combust. Flame, 2015, vol. 162, iss. 6, pp. 2569--2581. DOI: https://doi.org/10.1016/j.combustflame.2015.03.006

[14] Veshkini A., Eaves N.A., Dworkin S.B., et al. Application of PAH-condensation reversibility in modeling soot growth in laminar premixed and nonpremixed flames. Combust. Flame, 2016, vol. 167, pp. 335--352. DOI: https://doi.org/10.1016/j.combustflame.2016.02.024

[15] McEnally C., Pfefferle L., Atakan B., et al. Studies of aromatic hydrocarbon formation mechanisms in flames: progress towards closing the fuel gap. Prog. Energy Combust. Sci., 2006, vol. 32, iss. 3, pp. 247--294. DOI: https://doi.org/10.1016/j.pecs.2005.11.003

[16] Glassman I. Soot formation in combustion processes. Symp. (Int.) Combust., 1989, vol. 22, iss. 1, pp. 295--311. DOI: https://doi.org/10.1016/S0082-0784(89)80036-0

[17] Frenklach M., Mebel A. On the mechanism of soot nucleation. Phys. Chem. Chem. Phys., 2020, vol. 22, iss. 9, pp. 5314--5331. DOI: https://doi.org/10.1039/D0CP00116C

[18] Frenklach M., Wang H. Detailed modeling of soot particle nucleation and growth. Symp. (Int.) Combust., 1991, vol. 23, iss. 1, pp. 1559--1566. DOI: https://doi.org/10.1016/S0082-0784(06)80426-1

[19] Frenklach M. Reaction mechanism of soot formation in flames. Phys. Chem. Chem. Phys., 2002, vol. 4, iss. 11, pp. 2028--2037. DOI: https://doi.org/10.1039/B110045A

[20] Miller J., Klippenstein S. The recombination of propargyl radicals and other reactions on a C6H6 potential. J. Phys. Chem. A, 2003, vol. 107, iss. 39, pp. 7783--7799. DOI: https://doi.org/10.1021/jp030375h

[21] Kamphus M., Braun-Unkhoff M., Kohse-Hoinghaus K. Formation of small PAHs in laminar premixed low-pressure propene and cyclopentene flames: experiment and modeling. Combust. Flame, 2008, vol. 152, iss. 1--2, pp. 28--59. DOI: https://doi.org/10.1016/j.combustflame.2007.09.005

[22] Narayanaswamy K., Blanquart G., Pitsch H. A consistent chemical mechanism for oxidation of substituted aromatic species. Combust. Flame, 2010, vol. 157, iss. 10, pp. 1879--1898. DOI: https://doi.org/10.1016/j.combustflame.2010.07.009

[23] Kholghy M., Kelesidis G., Pratsinis S. Reactive polycyclic aromatic hydrocarbon dimerization drives soot nucleation. Phys. Chem. Chem. Phys., 2018, vol. 20, iss. 16, pp. 10926--10938. DOI: https://doi.org/10.1039/C7CP07803J

[24] Gonzalez M., Piel W., Asmus T., et al. Oxygenates screening for advanced petroleum-based diesel fuels: part 2. The effect of oxygenate blending compounds on exhaust emissions. SAE Tech. Pap., 2001, vol. 110, art. 2001-01-3632. DOI: https://doi.org/10.4271/2001-01-3632

[25] Musculus M., Dec J., Tree D. Effects of fuel parameters and diffusion flame lift-off on soot formation in a heavy-duty DI diesel engine. SAE Tech. Pap., 2002, art. 2002-01-0889. DOI: https://doi.org/10.4271/2002-01-0889

[26] Fayyazbakhsh A., Pirouzfar V. Comprehensive overview on diesel additives to reduce emissions, enhance fuel properties and improve engine performance. Renew. Sustain. Energy Rev., 2017, vol. 74, pp. 891--901. DOI: https://doi.org/10.1016/j.rser.2017.03.046

[27] Yusri I., Mamat R., Najafi G., et al. Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: a review on engine performance and exhaust emissions. Renew. Sustain. Energy Rev., 2017, vol. 77, pp. 169--181. DOI: https://doi.org/10.1016/j.rser.2017.03.080

[28] Awad O., Mamat R., Ibrahim T., et al. Overview of the oxygenated fuels in spark ignition engine: environmental and performance. Renew. Sustain. Energy Rev., 2018, vol. 91, pp. 394--408. DOI: https://doi.org/10.1016/j.rser.2018.03.107

[29] Das D., John P., McEnally C., et al. Measuring and predicting sooting tendencies of oxygenates, alkanes, alkenes, cycloalkanes, and aromatics on a unified scale. Combust. Flame, 2018, vol. 190, pp. 349--364. DOI: https://doi.org/10.1016/j.combustflame.2017.12.005

[30] Liu H., Wang Z., Li Y., et al. Recent progress in the application in compression ignition engines and the synthesis technologies of polyoxymethylene dimethyl ethers. Appl. Energy, 2019, vol. 233-234, pp. 599--611. DOI: https://doi.org/10.1016/j.apenergy.2018.10.064

[31] Yesilyurt M., Aydin M. Experimental investigation on the performance, combustion and exhaust emission characteristics of a compression-ignition engine fueled with cottonseed oil biodiesel/diethyl ether/diesel fuel blends. Energy Convers. Manag., 2020, vol. 205, art. 112355. DOI: https://doi.org/10.1016/j.enconman.2019.112355

[32] Lemaire R., Le Corre G., Nakouri M. Predicting the propensity to soot of hydrocarbons and oxygenated molecules by means of structural group contribution factors derived from the processing of unified sooting indexes. Fuel, 2021, vol. 302, art. 121104. DOI: https://doi.org/10.1016/j.fuel.2021.121104

[33] Ivankin A.N., Boldyrev V.S., Zhilin Yu.N., et al. Macrokinetic transformation of natural lipids for motor fuels production. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2017, no. 5 (74), pp. 95--108 (in Russ.). DOI: http://dx.doi.org/10.18698/1812-3368-2017-5-95-108

[34] Markov V.A., Chaynov N.D., Neverova V.V. Optimising the composition of biofuel blends with vegetable oil additives. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2019, no. 2 (83), pp. 114--131 (in Russ.). DOI: http://dx.doi.org/10.18698/1812-3368-2019-2-114-131

[35] Sudholt A., Cai L., Heyne J., et al. Ignition characteristics of a bio-derived class of saturated and unsaturated furans for engine applications. Proc. Combust. Inst., 2015, vol. 35, iss. 3, pp. 2957--2965. DOI: https://doi.org/10.1016/j.proci.2014.06.147

[36] Eldeeb M., Akih-Kumgeh B. Recent trends in the production, combustion and modeling of furan-based fuels. Energies, 2018, vol. 11, iss. 3, art. 512. DOI: https://doi.org/10.3390/en11030512

[37] Markov V.A., Nagornov S.A., Devyanin S.N. Composition and heat of combustion of biofuels produced from vegetable oils. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2012, no. 2 (45), pp. 65--80 (in Russ.).

[38] Huang J., Xiao H., Yang X., et al. Combustion characteristics and emission analysis of tetrahydrofuran--biodiesel-blended fuel in a diesel engine. Energy Fuels, 2021, vol. 35, iss. 4, pp. 3164--3173. DOI: https://doi.org/10.1021/acs.energyfuels.0c03885

[39] Wu Y., Zhang X., Zhang Z., et al. Effects of diesel-ethanol-THF blend fuel on the performance and exhaust emissions on a heavy-duty diesel engine. Fuel, 2020, vol. 271, art. 117633. DOI: https://doi.org/10.1016/j.fuel.2020.117633

[40] Lifshitz A., Bidani M., Bidani S. Thermal reactions of cyclic ethers at high temperatures. Part 3. Pyrolysis of tetrahydrofuran behind reflected shocks. J. Phys. Chem., 1986, vol. 90, iss. 15, pp. 3422--3429. DOI: https://doi.org/10.1021/j100406a024

[41] Dagaut P., Mcguinness M., Simmie J., et al. The ignition and oxidation of tetrahydrofuran: experiments and kinetic modeling. Combust. Sci. Technol., 1998, vol. 135, iss. 1-6, pp. 3--29. DOI: https://doi.org/10.1080/00102209808924147

[42] Aydogan B. Experimental investigation of tetrahydrofuran combustion in homogeneous charge compression ignition (HCCI) engine: effects of excess air coefficient, engine speed and inlet air temperature. J. Energy Inst., 2020, vol. 93, iss. 3, pp. 1163--1176. DOI: https://doi.org/10.1016/j.joei.2019.10.009

[43] Wu Y., Zhang X., Zhang Z., et al. Effects of diesel-ethanol-THF blend fuel on the performance and exhaust emissions on a heavy-duty diesel engine. Fuel, 2020, vol. 271, no. 117633. DOI: https://doi.org/10.1016/j.fuel.2020.117633

[44] Liang J., Zhang Q., Chen Z., et al. The combustion and emission characteristics of diesel-ethanol blends with THF as cosolvents in a diesel engine operating with EGR. Fuel, 2021, vol. 298, art. 120843. DOI: https://doi.org/10.1016/j.fuel.2021.120843

[45] De Iuliis S., Idir M., Chaumeix N., et al. Scattering/extinction measurements of soot formation in a shock tube. Exp. Therm. Fluid Sci., 2008, vol. 32, iss. 7, pp. 1354--1362. DOI: https://doi.org/10.1016/j.expthermflusci.2007.11.008

[46] Agafonov G., Bilera I., Vlasov P., et al. Unified kinetic model of soot formation in the pyrolysis and oxidation of aliphatic and aromatic hydrocarbons in shock waves. Kin. Katal., 2016, vol. 57, no. 5, pp. 557--572. DOI: https://doi.org/10.1134/S0023158416050013

[47] Utsav K., Beshir M., Farooq A. Simultaneous measurements of acetylene and soot during the pyrolysis of ethylene and benzene in a shock tube. Proc. Combust. Inst., 2017, vol. 36, iss. 1, pp. 833--840. DOI: https://doi.org/10.1016/j.proci.2016.08.087

[48] Frenklach M., Clary D., Gardiner Jr. W.C., et al. Effect of fuel structure on pathways to soot. Symp. (Int.) Combust., 1988, vol. 21, iss. 1, pp. 1067--1076. DOI: https://doi.org/10.1016/S0082-0784(88)80337-0

[49] Bauerle St., Karasevich Y., Slavov St., et al. Soot formation at elevated pressures and carbon concentrations in hydrocarbon pyrolysis. Symp. (Int.) Combust., 1994, vol. 25, iss. 1, pp. 627--634. DOI: https://doi.org/10.1016/S0082-0784(06)80694-6

[50] Bejaoui S., Mercier X., Desgroux P., et al. Laser induced fluorescence spectroscopy of aromatic species produced in atmospheric sooting flames using UV and visible excitation wavelengths. Combust. Flame, 2014, vol. 161, iss. 10, pp. 2479--2491. DOI: https://doi.org/10.1016/j.combustflame.2014.03.014

[51] Wu J., Song K., Litzinger T., et al. Reduction of PAH and soot in premixed ethylene--air flames by addition of ethanol. Combust. Flame, 2006, vol. 144, iss. 4, pp. 675--687. DOI: https://doi.org/10.1016/j.combustflame.2005.08.036

[52] Mouis A., Menon A., Katta V., et al. Effects of m-xylene on aromatics and soot in laminar, N2-diluted ethylene co-flow diffusion flames from 1 to 5 atm. Combust. Flame, 2012, vol. 159, iss. 10, pp. 3168--3178. DOI: https://doi.org/10.1016/j.combustflame.2012.03.014

[53] Beiling C., Xinlei L., Haifeng L., et al. Soot reduction effects of the addition of four butanol isomers on partially premixed flames of diesel surrogates. Combust. Flame, 2017, vol. 177, pp. 123--136. DOI: https://doi.org/10.1016/j.combustflame.2016.12.012

[54] Liu H., Zhang P., Liu X., et al. Laser diagnostics and chemical kinetic analysis of PAHs and soot in co-flow partially premixed flames using diesel surrogate and oxygenated additives of n-butanol and DMF. Combust. Flame, 2018, vol. 188, pp. 129--141. DOI: https://doi.org/10.1016/j.combustflame.2017.09.025

[55] Fedotov Yu.V., Belov M.L., Kravtsov D.A., et al. Experimental investigation of the dynamics in laser-induced fluorescence spectra of oil pollution. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2019, no. 1 (82), pp. 66--76 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2019-1-66-76

[56] Linstrom P., Mallard W. The NIST chemistry WebBook: a chemical data resource on the internet. J. Chem. Eng. Data, 2001, vol. 46, iss. 5, pp. 1059--1063. DOI: https://doi.org/10.1021/je000236i

[57] UV/Vis+ photochemistry database. science-softcon.de: website. Available at: https://www.science-softcon.de/spectra/pah/pah_1.php#129-00-0 (accessed: 15.06.2023).

[58] Eremin A. Formation of carbon nanoparticles from the gas phase in shock wave pyrolysis processes. Prog. Energy Combust. Sci., 2012, vol. 38, iss. 1, pp. 1--40. DOI: https://doi.org/10.1016/j.pecs.2011.09.002

[59] Cuoci A., Frassoldati A., Faravilli T., et al. OpenSMOKE++: an object-oriented framework for the numerical modeling of reactive systems with detailed kinetic mechanisms. Comput. Phys. Commun., 2015, vol. 192, pp. 237--264. DOI: https://doi.org/10.1016/j.cpc.2015.02.014

[60] Pejpichestakul W., Ranzi E., Pelucchi M., et al. Examination of a soot model in premixed laminar flames at fuel-rich conditions. Proc. Combust. Inst., 2019, vol. 37, iss. 1, pp. 1013--1021. DOI: https://doi.org/10.1016/j.proci.2018.06.104

[61] Ranzi E., Frassoldati A., Stagni A., et al. Reduced kinetic schemes of complex reaction systems: Fossil and biomass-derived transportation fuels. Int. J. Chem. Kinet., 2014, vol. 46, iss. 9, pp. 512--542. DOI: https://doi.org/10.1002/kin.20867

[62] Ranzi E., Cavallotti C., Cuicci A., et al. New reaction classes in the kinetic modeling of low temperature oxidation of n-alkanes. Combust. Flame, 2015, vol. 162, iss. 5, pp. 1679--1691. DOI: https://doi.org/10.1016/j.combustflame.2014.11.030

[63] Wu Y., Xu N., Yang M., et al. Ignition delay time measurement and kinetic modeling of furan, and comparative studies of 2,3-dihydrofuran and tetrahydrofuran at low to intermediate temperatures by using a rapid compression machine. Combust. Flame, 2020, vol. 213, pp. 226--236. DOI: https://doi.org/10.1016/j.combustflame.2019.12.010

[64] Savitzsky A., Golay M. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem., 1964, vol. 36, iss. 8, pp. 1627--1639. DOI: https://doi.org/10.1021/ac60214a047

[65] Wagner H.G. Soot formation in combustion. Symp. (Int.) Combust., 1979, vol. 17, iss. 1, pp. 3--19. DOI: https://doi.org/10.1016/S0082-0784(79)80005-3

[66] Frenklach M., Taki S., Durgaprasad M., et al. Soot formation in shock-tube pyrolysis of acetylene, allene, and 1,3-butadiene. Combust. Flame, 1983, vol. 54, iss. 1-3, pp. 81--101. DOI: https://doi.org/10.1016/0010-2180(83)90024-X

[67] Emelianov A., Eremin A., Gurentsov E., et al. Experimental study of soot size decrease with pyrolysis temperature rise. Proc. Combust. Inst., 2015, vol. 35, iss. 2, pp. 1753--1760. DOI: https://doi.org/10.1016/j.proci.2014.08.030

[68] Eremin A., Gurentsov E., Mikheyeva E. Experimental study of temperature influence on carbon particle formation in shock wave pyrolysis of benzene and benzene--ethanol mixtures. Combust. Flame, 2015, vol. 162, no. 1, pp. 207--215. DOI: https://doi.org/10.1016/j.combustflame.2014.09.015

[69] D’Anna A., Rolando A., Allouis C., et al. Nano-organic carbon and soot particle measurements in a laminar ethylene diffusion flame. Proc. Combust. Inst., 2005, vol. 30, iss. 1, pp. 1449--1456. DOI: https://doi.org/10.1016/j.proci.2004.08.276

[70] Michelsen H., Schrader P., Golay F. Wavelength and temperature dependences of the absorption and scattering cross sections of soot. Carbon, 2010, vol. 48, iss. 8, pp. 2175--2191. DOI: https://doi.org/10.1016/j.carbon.2010.02.014

[71] Eremin A., Gurentsov G., Popova E., et al. Size dependence of complex refractive index function of growing nanoparticles. Appl. Phys. B., 2011, vol. 104, no. 2, pp. 285--295. DOI: https://doi.org/10.1007/s00340-011-4420-8

[72] D’Anna A., Kent J. Aromatic formation pathways in non-premixed methane flames. Combust. Flame, 2003, vol. 132, iss. 4, pp. 715--722. DOI: https://doi.org/10.1016/S0010-2180(02)00522-9

[73] Blanquart G., Pepiot-Desjardins P., Pitsch H. Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors. Combust. Flame, 2009, vol. 156, iss. 3, pp. 588--607. DOI: https://doi.org/10.1016/j.combustflame.2008.12.007

[74] Johansson K., Head-Gordon M., Wilson K., et al. Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth. Science, 2018, vol. 361, no. 6406, pp. 997--1000. DOI: https://doi.org/10.1126/science.aat3417