|

The Self-Consistent Scheme Estimation of Effective Thermal Conductivity for the Transversally Isotropic Composite with Isotropic Ellipsoidal Inclusions

Authors: Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Yu. Published: 17.06.2015
Published in issue: #3(60)/2015  
DOI: 10.18698/1812-3368-2015-3-99-109

 
Category: Physics | Chapter: Thermal Physics and Theoretical Heat Engineering  
Keywords: self-consistent scheme, composite, ellipsoidal inclusions, effective thermal conductivity tensor

The article presents the estimation of effective thermal conductivity tensor components for the transversally isotropic composite with isotropic ellipsoidal inclusions. The estimation is performed by using the self-consistent method. For its implementation a mathematical model of the thermal interaction between an inclusion and a homogeneous medium is developed. The quantitative analysis of the obtained calculation correlations is performed. They are supposed to be used for estimating effective conductivity coefficients of a composite with ellipsoidal inclusions.

References

[1] Hill R. A self-consistent mechanics of composite materials. J. Mech. Phys. Solids, 1965, vol. 13, no. 4, pp. 213-222.

[2] Pan’kov A.A. Metody samosoglasovaniya mekhaniki kompozitov [Self-Consistent Methods of Composite Mechanics]. Perm’, Perm. Gos. Tekhn. Univ. Publ., 2008. 253 p.

[3] Eshelby J.D. Solid State Phisics, vol. 3. N.Y., Academic Press, 1956 (Russ. ed.: Kontinual’naya teoriya dislokatsiy. Moscow, In. Lit. Publ., 1963. 248 p.).

[4] Shermergor T.D. Teoriya uprugosti mikroneodnorodnykh sred [Theory of Microinhomogeneous Medium Elasticity]. Moscow, Nauka Publ., 1977. 400 p.

[5] Hershey A.V. The elasticity of anisotropic aggregate of anisotropic cubic crystals. J. Appl. Mech., 1954, vol. 21, no. 3, pp. 236.

[6] Zarubin V.S. Prikladnye zadachi termoprochnosti elementov konstruktsiy [Applied Problems of Structural Element Thermal Strength]. Moscow, Mashinostroenie Publ., 1985. 296 p.

[7] Sarychev A.K., Shalaev V.M. Electrodynamics of metamaterials. Singapore: World Scientific, 2007. 227 p.

[8] Apresyan L.A., Vlasov D.V. Factors of Anisotropic Ellipsoid Depolarization in an Anisotropic Medium. Zh. Tekh. Fiz. [J. Appl. Phys], 2014, vol. 84, no. 12, pp. 23-28 (in Russ.).

[9] Zarubin V.S., Kuvyrkin G.N., Savel’eva I.Yu. Estimation of the Effective Thermal Conductivity of the Composite with Spherical Inclusions by the Self-Consistent Method. Jelektr. Nauchno-Tehn. Izd "Nauka i obrazovanie" [El. Sc.-Tech. Publ. Science and Education], 2013, no. 9, pp. 435-444. DOI: 10.7463/0913.0601512

[10] Landau L.D., Lifshits E.M. Teoreticheskaya fizika. V 10 t. T. 8. Elektrodinamika sploshnykh sred [Theoretical Physics. In 10 volumes, vol. 8. Electrodynamics of Continuum]. Moscow, Nauka Publ., 1992. 664 p.

[11] Carslaw H.S., Jaeger J.C. Conduction of heat in solids. Oxford University Press, London, 1959.

[12] Zarubin V.S., Kuvyrkin G.N., Savel’eva I.Yu. Effective Coefficients of Thermal Conductivity of a Composite with Prolate Spheroid Inclusions. Teplovye protsessy v tekhnike [Thermal Processes in Engineering], 2013, vol. 5, no. 6, pp. 276-282 (in Russ.).

[13] Zarubin V.S., Savel’eva I.Yu. Effective Thermal Conductivity Coefficients of the Composites with Spheroidal Inclusions. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2013, no. 4, pp. 116-126 (in Russ.).

[14] Zarubin V.S., Kuvyrkin G.N. Effective Coefficients of Thermal Conductivity of a Composite with Ellipsoidal Inclusions. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2012, no. 3, pp. 76-85 (in Russ.).