Comparative Analysis for Thermal Conductivity Estimates of Unidirectional Fiber Composites

Authors: Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Yu. Published: 12.10.2016
Published in issue: #5(68)/2016  
DOI: 10.18698/1812-3368-2016-5-67-83

Category: Physics | Chapter: Thermal Physics and Theoretical Heat Engineering  
Keywords: unidirectional fiber composite, dual variational formulation of steady thermal conductivity problem, effective thermal conductivity tensor

This work is based on the dual variational formulation of the stationary heat conductivity problem for inhomogeneous anisotropic solids. The article offers two-sided estimates for the principal values of the tensor taking into account the mutual arrangement of the anisotropic reinforcing fiber cross-sections in a plane perpendicular to their axes. We considered different types of arrangement of fiber crosssections: the heat conduction composite is transversely isotropic or orthotropic. The estimates we calculated show that there are limits to the possible values of the thermal conductivity tensor components for the composite analyzed. As a result, it is possible to carry out an objective comparative analysis for the calculated ratios obtained using various approaches and intended to determine the desired characteristics. We estimated the most significant margins of error that occur when the target values for each component of the tensor are selected as half-sum of its boundary values. We determined the limits for key parameters that show reliable results with a significant difference in the thermal conductivity of the composite matrix and fibers.


[1] Karpinos D.M., ed. Kompozitsionnye materialy. Spravochnik [Handbook of composites]. Kiev, Nauk. Dumka Publ., 1985. 592 p.

[2] Handbook of composites. Ed. by Lubin G. N.Y., Van Nostrand Reinhold, 1982. 786 p.

[3] Vasilev V.V., Tarnopol’skiy Yu.M., ed. Kompozitsionnye materialy. Spravochnik [Handbook of composites]. Moscow, Mashinostroenie Publ., 1990. 512 p.

[4] Kalinchev V.A., Yagodnikov D.A. Tekhnologiya proizvodstva raketnykh dvigateley tverdogo topliva [Production technology of solid-propellant rocket engine]. Moscow, MGTU im. N.E. Baumana Publ., 2011. 688 p.

[5] Komkov M.A., Tarasov V.A. Tekhnologiya namotki kompozitnykh konstruktsiy raket i sredstv porazheniya [Wound composite structures technology and missile weapons]. Moscow, MGTU im. N.E. Baumana Publ., 2015. 432 p.

[6] Zarubin V.S., Kuvyrkin G.N. Mathematical modeling of thermomechanical processes under intense thermal effect. High Temperature, 2003, vol. 41, iss. 2, pp. 257-265. DOI: 10.1023/A:1023390021091

[7] Dul’nev G.N., Zarichnyak Yu.P. Teploprovodnost’ smesey i kompozitsionnykh materialov [Thermal conductivity of mixtures and composite materials]. Leningrad, Energiya Publ., 1974. 264 p.

[8] Shermergor T.D. Teoriya uprugosti mikroneodnorodnykh sred [Theory of elasticity of micrononuniform environments]. Moscow, Nauka Publ., 1977. 400 p.

[9] Christensen R.M. Mechanics of composite materials. N.Y., Wiley-Interscience publication, 1979. 348 p.

[10] Zarubin V.S., Kuvyrkin G.N., Savel’eva I.Yu. Thermal conductivity of composite reinforced with fibers. Izv. Vyssh. Uchebn. Zaved., Mashinostr. [Proc. of Higher Educational Institutions. Ма^ш Building], 2013, no. 5, pp. 75-81 (in Russ.). DOI: 10.18698/0536-1044-2013-5-75-81

[11] Zarubin V.S., Kuvyrkin G.N., Savel’eva I.Yu. Effective thermal conductance of the composite with inclusions in the form of elongated ellipsoid of revolution. Teplovye protsessy v tekhnike [Therm. Process. in Engineering], 2013, no. 6, pp. 76-82 (in Russ.).

[12] Zarubin V.S., Kuvyrkin G.N. Two-sided estimates for thermal resistance of an inhomoge-neous solid body. High Temperature, 2013, vol. 51, iss. 4, pp. 519-525. DOI: 10.1134/S0018151X1304024X

[13] Formalev V.F. Teploprovodnost’ anizotropnykh tel. Analiticheskie metody resheniya zadach [The thermal conductivity of anisotropic bodies. Analytical methods for solving problems]. Moscow, Fizmatlit Publ., 2014. 354 p.

[14] Zarubin V.S., Kuvyrkin G.N. Matematicheskie modeli mekhaniki i elektrodinamiki sploshnoy sredy [Mathematical models of mechanics and electrodynamics of continuous media]. Moscow, MGTU im. N.E. Baumana Publ., 2008. 512 p.

[15] Chen Y.-M., Ting J.-M. Ultra high thermal conductivity polymer composites. Carbon, 2002, vol. 40, pp. 359-362.

[16] Hashin Z., Strikman S. A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys., 1962, vol. 3. pp. 3125-3132. DOI: 10.1063/1.1728579

[17] Wooster W.A. Tensors and group theory for the physical properties of crystals. Oxford, Clarendon Press, 1973. 344 p.

[18] Zarubin V.S., Kuvyrkin G.N., Savel’eva I.Yu. The influence of relative position of fibers on the thermal conductivity of unidirectional fiber composites. Izv. Vyssh. Uchebn. Zaved., Mashinostr. [Proc. of Higher Educational Institutions. Маchine Building], 2014, no. 2, pp. 16-24 (in Russ.). DOI: 10.18698/0536-1044-2014-2-16-24

[19] Ryshik I.M., Gradstein I.S. Tables of integrals, series, and products. N.Y., Academic Press, 2007.