Assessment of Elastic Characteristics of a Composite with Short Isotropic Fibers
Authors: Zarubin V.S., Novozhilova O.V., Shishkina S.I. | Published: 14.02.2017 |
Published in issue: #1(70)/2017 | |
DOI: 10.18698/1812-3368-2017-1-4-14 | |
Category: Physics | Chapter: Thermal Physics and Theoretical Heat Engineering | |
Keywords: composite, isotropic short fibers, elasticity index, method of selfconsistency |
We built a mathematical model describing the interaction of the elements of the composite structure (short isotropic fibers and the matrix particles) with an isotropic elastic medium, whose moduli of elasticity are to be determined as the desired characteristics of the composite. The method of self-consistency helped to obtain the system of nonlinear matrix relations, establishing a connection between the desired composite moduli and the volume concentration of fibers and their elongation and elastic properties of the fibers and the matrix. We carried out a quantitative analysis of the mathematical model and defined the boundaries within which the influence of the fiber elongation is significant. The calculated dependences obtained made it possible to predict elastic properties of the composite reinforced with short fibers (including the form of nanostructured elements, for example carbon nanotubes).
References
[1] Handbook of composites. Ed. by G. Lubin. N.Y., Van Nostrand Reinhold, 1982. 786 p.
[2] Vasil’ev V.V., Tarnopol’skiy Yu.M., ed. Kompozitsionnye materialy. Spravochnik [Handbook of composites]. Moscow, Mashinostroenie Publ., 1990. 512 p.
[3] Komkov M.A., Tarasov V.A. Tekhnologiya namotki kompozitnykh konstruktsiy raket i sredstv porazheniya [Wound composite structures technology and missile weapons]. Moscow, MGTU im. N.E. Baumana Publ., 2015. 432 p.
[4] Kalinchev V.A., Yagodnikov D.A. Tekhnologiya proizvodstva raketnykh dvigateley tverdogo topliva [Production technology of solid-propellant rocket engine]. Moscow, MGTU im. N.E. Baumana Publ., 2011. 688 p.
[5] Shermergor T.D. Teoriya uprugosti mikroneodnorodnykh sred [Theory of elasticity of micrononuniform environments]. Moscow, Nauka Publ., 1977. 400 p.
[6] Brautman L., Kroc R., Sendetsky J., eds. Composite materials. In 8 volums. Vol. 2. Mechanics of composite materials. N.Y., 1975.
[7] Christensen R.M. Mechanics of composite materials. N.Y., Wiley-Interscience Publ., 1979. 348 p.
[8] Vanin G.A. Mikromekhanika kompozitsionnykh materialov [Micromechanics of composite materials]. Kiev, Naukova Dumka Publ., 1985. 304 p.
[9] Khoroshun L.P. Mathematical models and methods of the mechanics of stochastic composites. International Applied Mechanics, 2000, vol. 36, no. 10, pp. 1284-1316.
[10] Kats E.A. Fullereny, uglerodnye nanotrubki i nanoklastery. Rodoslovnaya form i idey [Fullerenes, carbon nanotubes and nanoclusters. Pedigree of forms and ideas]. Moscow, LKI Publ., 2008. 296 p.
[11] Kormilitsyn O.P. Mekhanika materialov i struktur nano- i mikrotekhniki [Mechanics of materials and nano- and microtechnology structures]. Moscow, Akademiya Publ., 2008. 224 p.
[12] Eshelby J.D., Seitz F., Turnbul D., eds. The continuum theory of lattice defects. In Collected Works of J.D. Eshelby "Progress in solid state physics". N.Y., Academic Press Publ., 1956, vol. 3, pp. 79-303.
[13] Zarubin V.S., Kuvyrkin G.N., Savel’eva I.Yu. Comparative analysis estimates of elastic moduli for composite. Isotropic spherical inclusions. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2014, no. 5, pp. 53-69 (in Russ.). DOI: 10.18698/0236-3941-2014-5-53-69
[14] Zarubin V.S. Prikladnye zadachi termoprochnosti elementov konstruktsiy [Applied problems of thermal strength of structural elements]. Moscow, Mashinostroenie Publ., 1985. 296 p.
[15] Zarubin V.S., Kuvyrkin G.N., Savel’eva I.Yu. Comparative analysis modulus elasticity estimates for composite anisotropic spherical inclusions. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2014, no. 6, pp. 20-31 (in Russ.). DOI: 10.18698/0236-3941-2014-6-20-31
[16] Hill R. A self-consistent mechanics of composite materials. J. Mech. Phys. Solids, 1965, vol. 13, no. 4, pp. 213-222.
[17] Tsvelodub I.Yu. On the inverse Eshelby tensor. Vestnik Chuvashskogo gos. ped. inst. im. I.Ia. Iakovleva. Ser. Mekhanika pred. sost. [I. Yakovlev Chuvash State Pedagogical University Bulletin. Ser. Mechanics Limit States], 2010, no. 2 (8), pp. 530-535 (in Russ.).
[18] Karpinos D.M., ed. Kompozitsionnye materialy. Spravochnik [Handbook of composites]. Kiev, Naukova Dumka Publ., 1985. 592 p.
[19] Golovin N.N., Zarubin V.S., Kuvyrkin G.N. Mixture models of composite mechanics. P. 1. Thermal mechanics and thermoelasticity of multicomponent mixture. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2009, no. 3, pp. 36-49 (in Russ.).
[20] Frantsevich I.N., Voronov F.F., Bakuta S.A. Uprugie postoyannye i moduli uprugosti metallov i nemetallov. Spravochnik [Elastic constants and elasticity modules of metals and nonmetals. Handbook]. Kiev, Naukova Dumka Publ., 1982. 287 p.