Temperature State of the Anisotropic Spherical Layer During Convective Heat Exchange with the Environment
Authors: Zarubin V.S., Leonov V.V., Zarubin V.S. Jr. | Published: 11.09.2019 |
Published in issue: #4(85)/2019 | |
DOI: 10.18698/1812-3368-2019-4-40-55 | |
Category: Physics | Chapter: Thermal Physics and Theoretical Heat Engineering | |
Keywords: convective heat transfer, anisotropic material, heat-shielding coating, problem of heat conductivity, spherical layer |
The paper focuses on the process of steady heat conduction in a spherical layer of a heat-shielding coating made of anisotropic material. The inner surface of the layer is ideally heat-insulated but its outer surface is exposed to heating by convective heat exchange with the environment, the temperature of which varies along this surface. Based on the obtained solution of the linear heat conduction problem, we quantitatively assessed the influence of the degree of anisotropy of the coating material, its relative thickness, intensity of convective heat transfer, and uneven distribution of ambient temperature on the equalization of temperature distribution in the spherical layer. The results obtained can be used to select the characteristics of an anisotropic coating material in order to reduce the temperature of the outer surface of the spherical layer in the zone of the most intense heating
This work was supported by a grant from the Russian Science Foundation (project of the Russian Science Foundation no. 17-79-10450)
References
[1] Reznik S.V., ed. Materialy i pokrytiya v ekstremalnykh usloviyakh. Vzglyad v budushchee. T. 2. Peredovye tekhnologii proizvodstva [Materials and coatings in extreme conditions. A look into the future. Vol. 2. Advanced production technologies]. Moscow, BMSTU Publ., 2002.
[2] Nikitin P.V. Teplovaya zashchita [Thermal protection]. Moscow, MAI Publ., 2006.
[3] Karpinos D.M., ed. Kompozitsionnye materialy [Composites]. Kiev, Naukova dumka Publ., 1985.
[4] Alifanov O.M., Ivanov N.A., Kolesnikov V.A., et al. A technique to evaluate temperature dependences of thermal and physical characteristics for anisotropic materials basing on an inverse problem solution. Vestnik MAI [Aerospace MAI Journal], 2009, vol. 16, no. 5, pp. 247--254 (in Russ.).
[5] Formalev V.F. Teploperenos v anizotropnykh tverdykh telakh. Chislennye metody, teplovye volny, obratnye zadachi [Heat transfer in anisotropic solids. Numerical methods, heat waves, inverse problems]. Moscow, FIZMATLIT Publ., 2015.
[6] Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Yu. Comparative analysis for thermal conductivity estimates of unidirectional fiber composites. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2016, no. 5, pp. 67--83 (in Russ.). DOI: 10.18698/1812-3368-2016-5-67-83
[7] Kotovich A., Zarubin V., Kuvyrkin G. Lokalnoe teplovoe vozdeystvie na teplozashchitnoe pokrytie [Local thermal effect on the thermal barrier coating]. LAP LAMBERT Academic Publishing, 2015.
[8] Surzhikov S.T. Aerophysics of the hypersonic air flow above surface of space vehicle at altitudes of less than 60 km. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, no. 5, pp. 33--45 (in Russ.). DOI: 10.18698/1812-3368-2016-5-33-45
[9] Formalev V.F. Heat and mass transfer in anisotropic bodies. High Temp., 2001, vol. 39, iss. 5, pp. 753--774. DOI: https://doi.org/10.1023/A:1012393413687
[10] Formalev V.F. Teploprovodnost anizotropnykh tel. Analiticheskie metody resheniya zadach [Heat conduction of anisotropic bodies. Analytical methods of problem solution]. Moscow, FIZMATLIT Publ., 2014.
[11] Attetkov A.V., Volkov I.K. Temperature field of cooled anisotropic plate under the influence of external heat flow. Izvestiya RAN. Energetika [Proceedings of RAS. Power Engineering], 2012, no. 6, pp. 108--117 (in Russ.).
[12] [12] Zarubin V.S., Kotovich A.V., Kuvyrkin G.N. Optimal thickness of the anisotropic surface on the cooling plate with applied local external heating. Izvestiya RAN. Energetika [Proceedings of RAS. Power Engineering], 2014, no. 5, pp. 45--50 (in Russ.).
[13] Attetkov A.V., Volkov I.K. The optimum thickness of an anisotropic wall, which separates two different environments, at its local heating. Teplovye protsessy v tekhnike [Thermal Processes in Engineering], 2017, vol. 9, no. 9, pp. 417--421 (in Russ.).
[14] Attetkov A.V., Volkov I.K. Optimum anisotropic coating thickness for a wall separating two different media and subjected to local heating. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2018, no. 4, pp. 4--15 (in Russ.). DOI: 10.18698/0236-3941-2018-4-4-15
[15] Formalev V.F., Kolesnik S.A. Conjugate heat transfer between wall gasdynamic flows and anisotropic bodies. High Temp., 2007, vol. 45, iss. 1, pp. 76--84. DOI: https://doi.org/10.1134/S0018151X07010105
[16] Formalev V.F., Kolesnik S.A., Kuznetsova E.L. The effect of longitudinal noniso-thermality on conjugate heat transfer between wall gasdynamic flows and blunt anisotropic bodies. High Temp., 2009, vol. 47, iss. 2, pp. 228--234. DOI: https://doi.org/10.1134/S0018151X09020138
[17] Formalev V.F., Kolesnik S.A., Selin I.A. About coupled heat exchange in a case of aerodynamic heat of bodies with high degree of anisotropy. Teplovye protsessy v tekhnike [Thermal Processes in Engineering], 2016, vol. 8, no. 9, pp. 388--394 (in Russ.).
[18] Kamke E. Differentialgleichungen: Losungsmethoden und Losungen. Verlagsgesellschaft Geest & Portig, Leipzig, 1965.
[19] Zaytsev V.F., Polyanin A.D. Spravochnik po lineynym obyknovennym differentsialnym uravneniyam [Handbook of linear ordinary differential equations]. Moscow, Faktorial Publ., 1997.
[20] Abramowitz M., Stegun I.A. Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Dover Publications, 1965.
[21] Avduevskiy V.S., Koshkin V.K., eds. Osnovy teploperedachi v aviatsionnoy i raketno-kosmicheskoy tekhnike [Fundamentals of heat transfer in aviation and rocket-space technologies]. Moscow, Mashinostroenie Publ., 1992.
[22] Alifanov O.M., Kolesnikov V.A. Defining the elements of the thermal conductivity tensor of anisotropic materials basing on an inverse problem solution. Trudy MAI, 2012, no. 58, pp. 1−14 (in Russ.).
[23] Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Yu. Estimation of effective heat conductivity of the textured composite with transverse isotropic ellipsoidal inclusions by the self-coupling method. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2015, no. 4, pp. 88--101 (in Russ.). DOI: 10.18698/1812-3368-2015-4-88-101
[24] Sergeeva E.S. Dependence of thermal-conductivity equivalent coefficients of sin-gle-walled carbon nanotubes on its chirality. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2018, no. 2, pp. 97--106 (in Russ.). DOI: 10.18698/1812-3368-2018-2-97-106