Method for Generating Gravitational Waves by Meansof a Standing Electromagnetic Wave System
Authors: Morozov A.N., Fomin I.V., Gladyshev V.O., Kauts V.L., Sharandin E.A., Kayutenko A.V. | Published: 05.01.2023 |
Published in issue: #6(105)/2022 | |
DOI: 10.18698/1812-3368-2022-6-90-105 | |
Category: Physics | Chapter: Theoretical Physics | |
Keywords: gravitational waves, metric tensor, electromagnetic waves, standing wave, electromagnetic resonator |
Abstract
In this paper, we consider the method of generating gravitational waves by means of a system of standing electromagnetic waves at the difference frequency in electromagnetic resonators and their further registration based on various types of detectors. As a factor of amplification of the amplitude of gravitational waves induced by the proposed method, the inverse dependence of their amplitude on the square of the difference frequency is considered, which is a consequence of Einstein’s equations for the studied configuration of electromagnetic fields in the resonator. The characteristics of gravitational waves associated with the electromagnetic field inside the resonator and gravitational waves in empty space are compared. The possibility of conducting an experiment on the generation and detection of gravitational waves with controlled parameters of the source and detector (Hertz experiment) on the basis of the proposed method has been investigated. Various types of existing and promising detectors of low-frequency gravitational waves are considered and an estimate of the source characteristics necessary for the successful detection of gravitational waves generated by this method is obtained. The effectiveness of the proposed approach is compared with other methods of generating gravitational waves. The specificity of the considered method of generating gravitational waves is noted, associated with the possibility of obtaining in laboratory conditions low-frequency gravitational waves with a frequency close to the frequency of gravitational waves of astrophysical sources and the amplitude significantly exceeding the amplitude of high-frequency gravitational waves, which can be generated on the basis of previously proposed methods
The study was supported by grant funds of the Russian Science Foundation (RSF project no. 19-12-00242, The conversion of electromagnetic and gravitational waves in a nonlinear dielectric medium when irradiated with an intense light source)
Please cite this article in English as:
Morozov A.N., Fomin I.V., Gladyshev V.O., et al. Method for generating gravitational waves by means of a standing electromagnetic wave system. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2022, no. 6 (105), pp. 90--105 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2022-6-90-105
References
[1] Maggiore M. Gravitational waves. Vol. 1. Theory and experiments. Oxford, Oxford Univ. Press, 2007.
[2] Fomin I.V., Chervon S.V., Morozov A.N. Gravitatsionnye volny ranney vselennoy [Gravitation waves of the early Universe]. Moscow, BMSTU Publ., 2018.
[3] Abbott B.P., Abbott P., Abbott T.D., et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 2016, vol. 116, iss. 6, art. 061102. DOI: https://doi.org/10.1103/PhysRevLett.116.061102
[4] Abbott B.P., Abbott P., Abbott T.D., et al. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB170817A. ApJL, 2017, vol. 848, art. L13. DOI: https://doi.org/10.3847/2041-8213/aa920c
[5] Gertsenshteyn M.E., Pustovoyt V.I. On the detection of low-frequency gravitational waves. ZhETF, 1962, vol. 43, no. 2, pp. 605--607 (in Russ.).
[6] Kadlecova H., Klimo O., Weber S., et al. Gravitational wave generation by interaction of high power lasers with matter using shock waves. Eur. Phys. J. D, 2017, vol. 71, no. 4, art. 89. DOI: https://doi.org/10.1140/epjd/e2017-70586-y
[7] Fomin I.V., Gladyshev V.O., Gorelik V.S., et al. Laboratory sources of gravitational waves. J. Phys.: Conf. Ser., 2020, vol. 1705, art. 012004. DOI: https://doi.org/10.1088/1742-6596/1705/1/012004
[8] Grishchuk L.P., Sazhin M.V. Emission of gravitational waves by an electromagnetic cavity. ZhETF, 1973, vol. 65, no. 2, pp. 441--454 (in Russ.).
[9] Grishchuk L.P., Sazhin M.V. Excitation and detection of standing gravitational waves. ZhETF, 1975, vol. 68, pp. 1569--1582 (in Russ.).
[10] Denisov V.I. The gravitational field inside a spherical electromagnetic resonator. Moscow Univ. Phys., 1977, vol. 32, no. 5, pp. 41--45.
[11] Gertsenshteyn M.E. Wave resonance of light and gravitational waves. JETP, 1962, vol. 14, no. 1, pp. 84--85.
[12] Zeldovich Ya.B. Electromagnetic and gravitational waves in a stationary magnetic field. JETP, 1974, vol. 38, no. 4, pp. 652--654.
[13] Kolosnitsyn N.I., Rudenko V.N. Gravitational Hertz experiment with electromagnetic radiation in a strong magnetic field. Phys. Scr., 2015, vol. 90, no. 7, art. 074059. DOI: https://doi.org/10.1088/0031-8949/90/7/074059
[14] Gorelik V.S., Pustovoit V.I., Gladyshev V.O., et al. Generation and detection of high frequency gravitational waves at intensive electromagnetic excitation. J. Phys.: Conf. Ser., 2018, vol. 1051, art. 012001. DOI: https://doi.org/10.1088/1742-6596/1051/1/012001
[15] Pustovoit V.I., Gladyshev V.O., Kauts V.L., et al. High frequency gravitational waves generation by optical methods. J. Phys.: Conf. Ser., 2020, vol. 1557, art. 012034. DOI: https://doi.org/10.1088/1742-6596/1557/1/012034
[16] Морозов А.Н., Пустовойт В.И. Генерация и регистрация связанных высокочастотных гравитационных волн. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2020, № 1 (88), c. 46--60. DOI: http://dx.doi.org/10.18698/1812-3368-2020-1-46-60
[17] Morozov A.N., Pustovoit V.I., Fomin I.V. On the gravitational waves coupled with electromagnetic waves. Prostranstvo, vremya i fundamentalnye vzaimodeystviya [Space, Time and Fundamental Interactions], 2020, no. 2, pp. 53--63 (in Russ.).
[18] Morozov A.N., Pustovoit V.I., Fomin I.V. Bound gravitational waves in a dielectric medium and a constant magnetic field. Eur. Phys. J. Plus, 2020, vol. 135, no. 12, art. 950. DOI: https://doi.org/10.1140/epjp/s13360-020-00961-0
[19] Morozov A.N., Pustovoit V.I., Fomin I.V. Generation of gravitational waves by a standing electromagnetic wave. Gravit. Cosmol., 2021, vol. 27, no. 1, pp. 24--29. DOI: https://doi.org/10.1134/S020228932101014X
[20] Akutsu T., Ando M., Arai K., et al. KAGRA: 2.5 generation interferometric gravitational wave detector. Nature Astron., 2019, vol. 3, no. 1, pp. 35--40. DOI: https://doi.org/10.1038/s41550-018-0658-y
[21] Maggiore M., Van den Broeck C., Bartolo N., et al. Science case for the Einstein telescope. JCAP, 2020, vol. 2020, art. 050. DOI: https://doi.org/10.1088/1475-7516/2020/03/050
[22] Ackley K., Adya V.B., Agrawal P., et al. Neutron star extreme matter observatory: a kilohertz-band gravitational-wave detector in the global network. Publ. Astron. Soc. Austral., 2020, vol. 37, art. 047. DOI: https://doi.org/10.1017/pasa.2020.39
[23] Peng H., Torr D.G. The electric field induced by a gravitational wave in a superconductor: a principle for a new gravitational wave antenna. Gen. Relat. Gravit., 1990, vol. 22, no. 1, pp. 53--59. DOI: https://doi.org/10.1007/BF00769245
[24] Vinet J.Y. Elasto-optical detection of gravitational waves. Annales de l’I.H.P. Physique Theorique, 1979, vol. 30, no. 3, pp. 251--262.
[25] Sabin C., Bruschi D.E., Ahmadi M., et al. Phonon creation by gravitational waves. New J. Phys., 2014, vol. 16, art. 085003. DOI: https://doi.org/10.1088/1367-2630/16/8/085003
[26] Bagnoud V., Blazevic A., Borneis S., et al. PHELIX: a petawatt-class laser recently commissioned for experiments in plasma and atomic physics. J. Phys.: Conf. Ser., 2009, vol. 194, art. 152028. DOI: https://doi.org/10.1088/1742-6596/194/15/152028
[27] Korzhimanov A.V., Gonoskov A.A., Khazanov E.A., et al. Horizons of petawatt laser technology. Phys.-Usp., 2011, vol. 54, no. 1, pp. 9--28. DOI: https://doi.org/10.3367/UFNe.0181.201101c.0009
[28] Lageyre P., D’Humieres E., Ribeyre X. Gravitational influence of high power laser pulses. Phys. Rev. D, 2021, vol. 105, iss. 10, art. 104052. DOI: https://doi.org/10.1103/PhysRevD.105.104052
[29] Sprangle P., Hafizi B., Ting A., et al. High-power fiber lasers for directed-energy applications. Appl. Opt., 2015, vol. 54, iss. 31, pp. F201--F209. DOI: https://doi.org/10.1364/AO.54.00F201