On potentials in Londons’ electrodynamics
Authors: Aliev I.N., Melikyants D.G. | Published: 04.04.2016 |
Published in issue: #2(65)/2016 | |
DOI: 10.18698/1812-3368-2016-2-42-50 | |
Category: Physics | Chapter: Theoretical Physics | |
Keywords: superconductivity, Maxwell equations, Londons’ equations, fluxoid, quantization of magnetic flux, canonical momentum, scalar potentials, vector potentials, superpotential |
The study tested the model of a multiply connected superconductor, for which we introduce the concept of fluxoids and present the classification of fluxoids. The findings of the research show that for simply connected circuits of the first type fluxoids equal to zero, but for the circuits of the second type, surrounding one and the same hole, fluxoid is even. By taking the quantization condition of Bohr-Sommerfeld into consideration, we established quantization of the magnetic flux in superconductors. For this condition, we examined the structure of the canonical momentum and introduced the concept of overpotential. Moreover, we clarified the problem of calibration of the introduced potential. As a result, we established that the relation binding at each point the density of the superconducting current and the vector potential of a constant magnetic field, taken in the selected calibration in the case of a simply connected superconductor, is a simple account of both material Londons’ equations.
References
[1] Linton E., Mak-Lin U. Hard Superconductors. Usp. Fiz. Nauk [Physics-Uspekhi], 1969, vol. 97, iss. 3, pp. 495-523 (in Russ.).
[2] McLennan J.C., Cockcroft J.D., Shoenberg D., Keesom W.H., Meissner W., De L. Kronig R., Brillouin L., Kurti N., Simon F., Peierls R., London F., Mendelssohn R., Bernal J.D., Mott N.F., Blackman M. A discussion on supraconductivity and other low temperature phenomena. Proc. Roy. Soc., 1935, vol. 152, pp. 1-46.
[3] London F. The electromagnetic equations of supracondactor. Proc. Roy. Soc., 1935, vol. 149, pp. 71-88.
[4] London F. Macroscopical interpretation of supracondactivity. Proc. Roy. Soc., 1935, vol. 152, p. 24-34.
[5] Aliev I.N., Tolmachev V.V. Optiko-mekhanicheskaya analogiya i uravnenie Shredingera [Optical-Mechanical Analogy and the Schradinger Equation]. Moscow, MGTU im. N.E. Baumana Publ., 1998. 80 p.
[6] Abragam M., Becker R. Theorie der Elekrizitat, Bd. 1. Einfiihrung in die Maxwellsche theorie der Elektrizitat. Leipzig, Berlin, B.G. Teubner, 1932.
[7] Aliev I.N., Kopylov I.S. Applying the Lagrange multipliers method to the calculation of DC magnetic field. Dinamika slozhnykh sistem [Dynamics of Complex Systems], 2015, no. 4, pp. 3-10 (in Russ.).
[8] Aliev I.N., Samedova Z.A. The behavior of an electric dipole in a pulsating field. Elektromagnitnye volny i elektronnye sistemy [Electromagnetic Waves and Electronic Systems], 2015, no. 8, pp. 59-65 (in Russ.).
[9] Tinkham M. Vvedenie v sverkhprovodimost’ [Introduction to Superconductivity]. Moscow, Atomizdat Publ., 1980. 310 p.
[10] Aliev I.N., Kopylov I.S. Use of Dirac monopoles formalism in some magnetism problems. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2015, no. 6, pp. 25-39 (in Russ.). DOI: 10.18698/1812-3368-2015-6-25-39
[11] Mitrokhin V.N. Elektrodinamicheskie svoystva material’nykh sred [The Electrodynamic Properties of Material Media]. Moscow, MGTU im. N.E. Baumana Publ., 2006. 120 p.
[12] Kravchenko V.F. Elektrodinamika sverkhprovodyashchikh struktur. Teoriya, algoritmy i metody vychisleniy [Electrodynamics of Superconducting Structures. Theory, Algorithms and Computational Methods]. Moscow, Fizmatlit Publ., 2006. 280 p.
[13] Yurchenko S., Komarov K., Pustovoit V. Multilayer-graphene-based amplifier of surface acoustic waves. AIP advanced, 2015, vol. 5, p. 057144.