Nonequilibrium Fluctuations of a Brownian Particle in a Medium with Production of Entropy

Authors: Morozov A.N. Published: 18.02.2021
Published in issue: #1(94)/2021  
DOI: 10.18698/1812-3368-2021-1-47-56

Category: Physics | Chapter: Theoretical Physics  
Keywords: Brownian motion, fluctuations, nonequilibrium state, production of entropy, characteristic function

The study statistically describes Brownian motion in a locally nonequilibrium medium, taking into account the production of entropy, and proposes to describe the nonequilibrium fluctuations of the velocity of a Brownian particle using a linear integro-differential equation. The characteristic functions of fluctuations of the Brownian particle velocity are obtained, which make it possible to carry out a complete statistical description of Brownian motion in a medium with the production of entropy. Findings of research show that the variance of these fluctuations increases with time according to the logarithmic law. The correlation function of fluctuations of the Brownian particle velocity is calculated and it is shown that it consists of two terms. The first term, which has a power-law dependence, describes equilibrium fluctuations, and the second, which has a logarithmic dependence, describes nonequilibrium fluctuations


[1] Glansdorff P., Prigogine I. Thermodynamic theory of structure, stability and fluctuations. Wiley, 1971.

[2] Sobolev S.L. Local non-equilibrium transport models. Phys. Usp., 1997, vol. 40, no. 10, pp. 1043--1053. DOI: https://doi.org/10.1070/PU1997v040n10ABEH000292

[3] Jou D., Casas-Vazquez J., Lebon G. Extended irreversible thermodynamics. Berlin, Heidelberg, Springer, 2001. DOI: https://doi.org/10.1007/978-3-642-56565-6

[4] Bochkov G.N., Kuzovlev Yu.E. New aspects in 1/f noise studies. Sov. Phys. Usp., 1983, vol. 26, no. 9, pp. 829--844. DOI: https://doi.org/10.1070/PU1983v026n09ABEH004497

[5] Kuzovlev Yu.E. Why nature needs 1/f noise. Phys. Usp., 2015, vol. 58, no. 7, pp. 719--729. DOI: https://doi.org/10.3367/UFNe.0185.201507d.0773

[6] Morozov A.N. Flicker noise in a locally nonequilibrium medium. JETP Lett., 2018, vol. 107, no. 12, pp. 798--799. DOI: https://doi.org/10.1134/S002136401812010X

[7] Morozov A.N. Brownian motion as an irreversible non-Markovian process. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2019, no. 2 (83), pp. 94--103 (in Russ.). DOI: http://dx.doi.org/10.18698/1812-3368-2019-2-94-103

[8] Morozov A.N., Skripkin A.V. Nemarkovskie fizicheskie protsessy [Non-Markovian physical processes]. Moscow, FIZMATLIT Publ., 2018.

[9] Marchesoni F., Taloni A. Subdiffusion and long-time anticorrelations in a stochastic single file. Phys. Rev. Lett., 2006, vol. 97, iss. 10, art. 106101. DOI: https://doi.org/10.1103/PhysRevLett.97.106101

[10] Lisy V., Tothova J., Glod L. On the correlation properties of thermal noise in fluids. Int. J. Thermophys., 2013, vol. 34, pp. 629--641.

[11] Morozov A.N. Method for describing non-Markovian processes defined by a system of linear integral equations. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2017, no. 5 (74), pp. 57--66 (in Russ.). DOI: http://dx.doi.org/10.18698/1812-3368-2017-5-57-66

[12] Hauge E.H., Martin-Lof A. Fluctuating hydrodynamics and Brownian motion. J. Stat. Phys., 1973, vol. 7, no. 3, pp. 259--281. DOI: https://doi.org/10.1007/BF01030307

[13] Mainardi F., Mura A., Tampieri F. Brownian motion and anomalous diffusion revisited via a fractional Langevin equation. Modern Probl. Stat. Phys., 2009, vol. 8, pp. 3--23.

[14] Lenzi E.K., Evangelista L.R., Lenzi M.K., et al. Solutions for a non-Markovian diffusion equation. Phys. Lett. A, 2010, vol. 374, iss. 41, pp. 4193--4198. DOI: https://doi.org/10.1016/j.physleta.2010.08.049

[15] Mura A., Taqqu M.S., Mainardi F. Non-Markovian diffusion equations and processes: analysis and simulations. Physica A, 2008, vol. 387, iss. 21, pp. 5033--5064. DOI: https://doi.org/10.1016/j.physa.2008.04.035

[16] Fuentes M.A., Caceres M.O. Computing the non-linear anomalous diffusion equation from first principles. Phys. Lett. A, 2008, vol. 372, iss. 8, pp. 1236--1239. DOI: https://doi.org/10.1016/j.physleta.2007.09.020

[17] Morozov A.N. Description of transfer processes in a locally nonequilibrium medium. Entropy, 2019, vol. 21, no. 1, art. 9. DOI: https://doi.org/10.3390/e21010009

[18] Li J.-G., Zu J., Shao B. Factorization law for entanglement evolution of two qubits in non-Markovian pure dephasing channels. Phys. Lett. A, 2011, vol. 375, iss. 24, pp. 2300--2304. DOI: https://doi.org/10.1016/j.physleta.2011.04.053

[19] Iwamatsu A., Ogawa Y., Mitsumori Y., et al. Non-Markovian dephasing of excitons in GaAs quantum wells. J. Lumin., 2006, vol. 119--120, pp. 487--491. DOI: https://doi.org/10.1016/j.jlumin.2006.01.040

[20] Xia H. Non-Markovian velocity diffusion in plasma turbulence. Bibliographic information available from INIS: http://inis.iaea.org/search/search.aspx?orig_q=RN:27033692 (аvailable from University Microfilms, P.O. Box 1764, Ann Arbor, MI 48106 (United States). Order No. 93-25,770).

[21] Akhiezer A.I., Peletminskiy S.V. Metody statisticheskoy fiziki [Methods of statistical physics]. Moscow, Nauka Publ., 1977.

[22] Yanke E., Emde F., Lesh F. Spetsial’nye funktsii [Special functions]. Moscow, Nauka Publ., 1977.