Background Image
Previous Page  5 / 15 Next Page
Information
Show Menu
Previous Page 5 / 15 Next Page
Page Background

η

(

t

) =

η

, then, for functions

B

i

(

t

) =

b

i

(

t

) +

c

i

d

i

(

t

)

,

i

= 1

, m

, all

conditions of theorem 2 are fulfilled and, thus, terminal problem (3), (4)

for system (2) has got a solution.

Let us assume that

ρ

6

m

. The Euclidean norm will be considered as the

vector norm from the space

R

ρ

and

ρ

×

ρ

-matrices. Let

r

= max

{

r

1

, . . . , r

ρ

}

.

For all pairs of the indices

l

и

j

, where

l

∈ {

2

, . . . , r

}

,

j

∈ {

1

, . . . , ρ

}

,

l > r

j

, we will introduce the formally additional variables

z

j

l

. Let us denote

z

l

= (

z

1

l

, . . . , z

ρ

l

)

T

,

l

= 1

, r

. According to the definition, let us assume that

if

l > r

j

, then

∂q

i

/∂z

j

l

= 0

for all

i

= 1

, ρ

. Let us take

∂q/∂z

l

for denoting

ρ

×

ρ

-matrices with elements

∂q

i

/∂z

j

l

,

i, j

= 1

, ρ

.

Irrespective of the number

i

, we specify the functions

d

i

(

t

)

with the

formula

d

i

(

t

)

d

(

t

) =

t

r

(

t

t

)

r

t

R

0

t

r

(

t

t

)

r

dt

.

(9)

We will denote

L

= max

[0

,t

]

{

d

(

t

) +

|

d

0

(

t

)

|

+

|

d

00

(

t

)

|

+

. . .

+

|

d

(

r

1)

(

t

)

|}

.

Let us prove the following auxiliary statement.

Lemma 1.

Let

P

(

t

)

,

R

(

t

)

be

ρ

×

ρ

-matrices with elements

P

ij

(

t

)

,

R

ij

(

t

)

C

[0

, t

]

, and there exists such a number

λ

R

, with all

y

R

ρ

,

t

[0

, t

]

, the inequality is fulfilled

:

(

P

(

t

)

y, y

)

6

λ

k

y

k

2

.

(10)

Then

ρ

×

ρ

-matrix

W

(

t

)

,

which is the solution to the Cauchy problem

˙

W

=

P

(

t

)

W

+

R

(

t

)

,

W

(0) = 0

,

(11)

satisfies the inequality

k

W

(

t

)

k

6

e

λt

t

Z

0

k

R

(

t

)

k

e

λt

dt.

(12)

J

We denote

j

-th matrix columns

W

(

t

)

and

R

(

t

)

with

W

j

(

t

)

and

R

j

(

t

)

,

respectively. Then the system

˙

W

=

P

(

t

)

W

+

R

(

t

)

can be written in the

following form:

 

˙

W

1

˙

W

2

. . .

˙

W

ρ

 

=

 

P

(

t

) 0

. . .

0

0

P

(

t

)

. . .

0

...

...

. . .

...

0 0

. . . P

(

t

)

 

 

W

1

W

2

. . .

W

ρ

 

+

 

R

1

(

t

)

R

2

(

t

)

. . .

R

ρ

(

t

)

 

.

20

ISSN 1812-3368. Herald of the BMSTU. Series “Natural Sciences”. 2014. No. 5