Previous Page  6 / 7 Next Page
Information
Show Menu
Previous Page 6 / 7 Next Page
Page Background

В.И. Вишняков, С.М. Вишнякова, П.В. Дружинин

22

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 3

dent consideration of flows in viscous and plastic zones in

a flat MHD channel enables studying the behavior of the

boundary between the zones when an external magnetic

field is abruptly changed. We obtained the exact equation

that determines the dependence of the zone width of plas-

tic flow on the time and on magnetic field. Moreover, we

performed a numerical integration of the equation for

some values of parameters to identify the nature of the

searched dependence and gave the results in graphs. Theo-

retical analysis and numerical calculations show that the

sudden magnetic field increase causes a sharp increase in

the zone width of plastic flow in a short time period, but

the transition to the new steady state is complete in infinite

time. The proposed method allows determining the posi-

tion of the boundary of the plastic flow zone as a function

of time in the case of an abrupt decrease in the external

magnetic field induction

REFERENCES

[1] Borzenko E.N., Shrager G.R., Yakutenok V.A. Free-surface non-Newtonian fluid flow in

a round pipe.

Journal of Applied Mechanics and Technical Physics

, 2012, vol. 53, no. 2,

pp. 190–197. DOI: 10.1134/S002189441202006X

Available at:

http://link.springer.com/article/10.1134/S002189441202006X

[2] Bulgakov V.K., Lipatov A.M., Chekhonin K.A., Ivanov O.N. Simulation of non-Newtonian

flow with yield limit.

Mekhanika kompozitsionnykh materialov

, 1988, no. 6, pp. 1112–1116

(in Russ.).

[3] Begun A.S., Burenin A.A., Zhilin S.G., Kovtanyuk L.V. Flow of an elastoviscoplastic mate-

rial between rotating cylindrical surfaces with nonrigid cohesion.

Journal of Applied Mechanics

and Technical Physics

, 2015, vol. 56, no. 2, pp. 293–303. DOI: 10.1134/S0021894415020157

Available at:

http://link.springer.com/article/10.1134%2FS0021894415020157

[4] Borin D.Yu., Mikhaylov V.P., Bazinenkov A.M. Modeling of magnetorheological actuator for

module of linear super-accurate displacements.

Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana,

Mashinostr

. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2007, no. 4,

pp. 58–71 (in Russ.).

[5] Genin L.G., Sviridov V.G. Gidrodinamika i teploobmen MGD-techeniy v kanalakh

[Hydrodynamics and heat exchange of MHD flows in channels]. Moscow, MEI Publ.,

2001. 200 p.

[6] Gnoevoy A.V., Klimov D.M., Chesnokov V.M. Osnovy teorii techeniy bingamovskikh sred

[Fundamentals of Bingham medium flows]. Moscow, Fizmatlit Publ., 2014. 272 p.

[7] Kirko I.M., Kirko G.E. Magnitnaya gidrodinamika. Sovremennoe videnie problem

[Magnetic hydrodynamics. Up-to-date problem view]. Moscow–Izhevsk, NITs “Regulyarnaya

i khaoticheskaya dinamika” Publ., IKI Publ., 2009. 632 p.

[8] Vishnyakov V.I., Pokrovskiy L.D. On the theory of nonstationary visco-plastic media flow.

Inzhenernyy zhurnal: nauka i innovatsii

[Engineering Journal: Science and Innovation], 2013,

no. 8 (in Russ.). DOI: 10.18698/2308-6033-2013-8-876

Available at:

http://engjournal.ru/eng/catalog/fundamentals/physics/876.html