В.И. Вишняков, С.М. Вишнякова, П.В. Дружинин
22
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 3
dent consideration of flows in viscous and plastic zones in
a flat MHD channel enables studying the behavior of the
boundary between the zones when an external magnetic
field is abruptly changed. We obtained the exact equation
that determines the dependence of the zone width of plas-
tic flow on the time and on magnetic field. Moreover, we
performed a numerical integration of the equation for
some values of parameters to identify the nature of the
searched dependence and gave the results in graphs. Theo-
retical analysis and numerical calculations show that the
sudden magnetic field increase causes a sharp increase in
the zone width of plastic flow in a short time period, but
the transition to the new steady state is complete in infinite
time. The proposed method allows determining the posi-
tion of the boundary of the plastic flow zone as a function
of time in the case of an abrupt decrease in the external
magnetic field induction
REFERENCES
[1] Borzenko E.N., Shrager G.R., Yakutenok V.A. Free-surface non-Newtonian fluid flow in
a round pipe.
Journal of Applied Mechanics and Technical Physics
, 2012, vol. 53, no. 2,
pp. 190–197. DOI: 10.1134/S002189441202006X
Available at:
http://link.springer.com/article/10.1134/S002189441202006X[2] Bulgakov V.K., Lipatov A.M., Chekhonin K.A., Ivanov O.N. Simulation of non-Newtonian
flow with yield limit.
Mekhanika kompozitsionnykh materialov
, 1988, no. 6, pp. 1112–1116
(in Russ.).
[3] Begun A.S., Burenin A.A., Zhilin S.G., Kovtanyuk L.V. Flow of an elastoviscoplastic mate-
rial between rotating cylindrical surfaces with nonrigid cohesion.
Journal of Applied Mechanics
and Technical Physics
, 2015, vol. 56, no. 2, pp. 293–303. DOI: 10.1134/S0021894415020157
Available at:
http://link.springer.com/article/10.1134%2FS0021894415020157[4] Borin D.Yu., Mikhaylov V.P., Bazinenkov A.M. Modeling of magnetorheological actuator for
module of linear super-accurate displacements.
Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana,
Mashinostr
. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2007, no. 4,
pp. 58–71 (in Russ.).
[5] Genin L.G., Sviridov V.G. Gidrodinamika i teploobmen MGD-techeniy v kanalakh
[Hydrodynamics and heat exchange of MHD flows in channels]. Moscow, MEI Publ.,
2001. 200 p.
[6] Gnoevoy A.V., Klimov D.M., Chesnokov V.M. Osnovy teorii techeniy bingamovskikh sred
[Fundamentals of Bingham medium flows]. Moscow, Fizmatlit Publ., 2014. 272 p.
[7] Kirko I.M., Kirko G.E. Magnitnaya gidrodinamika. Sovremennoe videnie problem
[Magnetic hydrodynamics. Up-to-date problem view]. Moscow–Izhevsk, NITs “Regulyarnaya
i khaoticheskaya dinamika” Publ., IKI Publ., 2009. 632 p.
[8] Vishnyakov V.I., Pokrovskiy L.D. On the theory of nonstationary visco-plastic media flow.
Inzhenernyy zhurnal: nauka i innovatsii
[Engineering Journal: Science and Innovation], 2013,
no. 8 (in Russ.). DOI: 10.18698/2308-6033-2013-8-876
Available at:
http://engjournal.ru/eng/catalog/fundamentals/physics/876.html