Previous Page  5 / 16 Next Page
Information
Show Menu
Previous Page 5 / 16 Next Page
Page Background

Modification of the LS-STAG Immersed Boundary Method for Simulating Turbulent Flows

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 5

23

The following designations are introduced in Table 2:

is the Spalart —

Allmaras (S-A) working variable [4];

is the dissipation rate of the turbulent kinetic

energy

;

k

is the specific dissipation rate of

;

k

4

1

2

2

500 3.424

= tanh min max

,

,

;

0.09

w w

k w

k

k

F

d d CD d



 

20

= max( ,10 );

k

k

CD

D

1.712 =

;

k

k

D

 

2

= 0.1355[1 ] ;

t

P

f S

 

 

2 0.5

2

=1.2

;

t

f

e

 

= ;

2

2

=

;

0.1681

turb

u v

S

f

y x

l

 

 

 

2

1

=1

;

1

f

f

 

3

1 3

=

;

357.911

f

 

=

;

t

t

t

xx

yy

xy

u

v

u v

P

x

y

y x

  

 

 

 

  

2

2

= 3.2391 0.8061

;

w

t

turb

D

f

f

l

 

 

 

1/6

6

65

=

;

64

w

f

g

g

  

6

= 0.3(

);

g r

r r

 

2

= min

,10 ;

0.1681

turb

r

Sl

1

2

= max 0.31 ,

;

u v

G

F

y x

 

 

 

2

2

2

2

500

= tanh max

,

.

0.09

w w

k

F

d d



 

Modification of the LS-STAG immersed boundary method.

The Cartesian

mesh with cells

,

1

1

=( , ) ( ,

)

i j

i

i

j

j

x x y y

is introduced in the rectangular

computational domain

.

It is denoted that

,

i j

is the face of

,

i j

cell and

,

= ( , )

c

c c

i

i j

j

x y

x

is the center of this cell, which is called "base mesh". Pressure is

computed in the center of

,

.

i j

Unknown components

,

i j

u

and

,

i j

v

of velocity vector

v

are computed in the middle of fluid parts of the cell faces. These points are

the centers of control volumes

1

1

,

= ( ,

) ( ,

)

u

c c

j

j

i

i

i j

x x

y y

(

x

-mesh) and

,

=

v

i j

1

1

( ,

) ( ,

)

c c

i

i

j

j

x x y y

(

y

-mesh) with faces

,

u

i j

and

,

v

i j

and squares

x

ij

M

and

,

,

y

i j

M

respectively (Fig. 2).

The level-set function

= ( ) = ( , )

x y

  

r

[9] is used for immersed boundary

ib

description [2]:

( ) < 0,

= \ {

};

( ) = 0,

;

( ) > 0,

.

f

ib

ib

ib

ib

   





r

r

r

r

r

r