Previous Page  9 / 16 Next Page
Information
Show Menu
Previous Page 9 / 16 Next Page
Page Background

Modification of the LS-STAG Immersed Boundary Method for Simulating Turbulent Flows

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 5

27

   

     



 

 

  

 

1,

,

,

1,

1

1,

,

,

1,

1,

,

1,

1

1,

,

,

,

,

,

,

1,

,

,

,

if

0,

0;

(

) / 2

(

, )

=

, if

= 0,

0;

/ 2

( , )

=

,

if

0,

= 0.

/ 2

i

j

i j

v

v

i j

i

j

v

v

i

i

i

j

i j

ib w

ib

i

j

j

i

j

v

v

i j

i

j

v

i

i

j

i j

i j

ib e

ib

j

i j

i j

v

v

i j

i

j

v

i

i j

i j

v

v

x

x

v

v x y

v

v

x

x

x

v x y v

v

x

x

Components of hydrodynamic force acting on the immersed boundary can be

computed as the following:

 

 

     

 

 



,

1,

,

,

,

cut-cells ,

=

(

)

Quad

;

u

u

ib

xa

j

i j

i

j

i j

i j

ib

i j

i j

u

u

F

y p

x

y

y

e n

 

       

,

,

, 1

,

сut-cells

,

,

=

Quad

(

)

.

ib

v

v

ya

i

i j

i j

i j

i j

ib

i j

i j

v

v

F

x p

x

y

x

e n

Here

xa

F

is the drag force,

ya

F

is the lift force,

 

1

=

,

i

i

i

x x x

 

1

=

,

j

j

j

y y y

,

Quad

ib

i j

is the quadrature of the shear stresses.

,

Quad

ib

i j

has to be adapted to each type

of cut-cells. This quadrature is based on the location of point where the shear stresses

are sampled in Fig. 4 and the trapezoidal rule.

It is conveniently to sample the linear turbulence scale

turb

l

and the characteristic

filter size

for LES and DES at the same points as the

t

and

.

k

We recall that the

maximum mesh step at the given point of the computational domain is used as a filter

size

for DES approach. Since we deal with

xy

-mesh, the characteristic filter size is

defined as a following:

 

     

max

,

,

1,

,

1,

, 1

,

, 1

= = max{

,

,

,

,

,

},

xy

xy

xy

xy

xy

xy

i j

i j

i

j

i j

i

j

i j

i j

i j

y

y y

x

x x

where

 

    

1

,

,

, 1

1=

;

2

xy

u

u

j

j

i j

i j

i j

y

y

y

    

1

,

,

1,

1=

.

2

xy

v

v

i

i

i j

i j

i

j

x

x

x

Within LES approach the following filter can also be used on the LS-STAG mesh:

 

,

,

,

= = .

xy

vol

i j

i j

i j

M

According to the concept of the LS-STAG method, equations (1), (7) should be

written in integral form for cell of base mesh, cell of

x

-mesh, cell of

y

-mesh and cell of

xy

-mesh, respectively:

,

= 0;

i j

dS

v n

(10)