Previous Page  11 / 16 Next Page
Information
Show Menu
Previous Page 11 / 16 Next Page
Page Background

Modification of the LS-STAG Immersed Boundary Method for Simulating Turbulent Flows

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 5

29

backward differentiation formula (AB/BDF 2) scheme. Predictor step leads to discrete

analogues of the Helmholtz equation for velocities prediction

,

x

U

y

U

at the time

 

1

= ( 1) :

n

t

n t

 

 

 

 

   

 

 

   

1

, ,

1 1

, , 1

,

,

1

, ,

1 1

, , 1

,

,

3 4

2

2

2

(

)

= 0;

3 4

2

2

2

(

)

n n

x

x

x

n n

ib c n n n

ib c n

x

x x

x

x x

x

T n n

n n

ib

x

xx

x xy

x x

x

n n

y

y

y

n n

ib c n n n

ib c n

y

y y

y

y y

y

T n n

n n

ib

y

yy

y xy

y y

y

U U U

M

C U S

C U S

t

D P T D T K U S

U U U

M

C U S

C U S

t

D P T D T K U S

= 0.

(14)

Here

t

is the constant time discretization step. Corrector step is the following:

1

1

3

(

) = 0;

2

n

T n

n

x

x

x

x

U U

M

D P P

t

1

1

3

(

) = 0;

2

n

y

y

T n

n

y

y

U U

M

D P P

t

,

1

1

1

= 0.

ib n

n

n

x x

y y

D U D U U

It leads to the following discrete analogue of Poisson equation for pressure

function

  

1

= 2 (

)/3:

n

n

t P P

   

, 1

,

ib n

x x

y y

A D U D U U

(15)

1

1

= ( ) ( )

( ) ( ) .

x x

x T y

y

y T

A D M D D M D

Then flow variables at the time point

1

n

t

are computed by the following formulae:

1

1

=

;

n

T

x

x

x x

U U M D

1

1

=

;

n

T

y

y y

U Uy M D

1

3=

.

2

n

n

P

P

t

(16)

After this, new values of Reynolds or subgrid stresses

1

,

n

xx

T

1

,

n

yy

T

1

n

xy

T

are

computed according to (8), (9) by solving the discrete analogues of the equations

from the used turbulence model:

 

 

 

    

 

  

1

, ,

[ ]

[ ,

]

[ ]

[ ,

,

]

= 0.

n

n

n

xy

xy

n ib c n

ib

xy n n

xy

n

ib

xy

n

xy

M

C U S

K G

t

S G

M PDA

(17)

Numerical experiments.

The flow past circular airfoil was simulated using the

developed modification of the LS-STAG method. The time averaged drag coefficient

D

C

and the Strouhal number

St

were computed. The coefficient

D

C

was obtained by

averaging over a large period of time the unsteady load

2

( )

( ) =

.

/ 2

xa

D

F t

C t

V