Previous Page  10 / 16 Next Page
Information
Show Menu
Previous Page 10 / 16 Next Page
Page Background

I.K. Marchevsky, V.V. Puzikova

28

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 5

 

  

  

  

 

  

  

  

,

,

,

,

,

,

,

,

,

,

,

,

( )

= 0;

( )

= 0;

u

u

u

u

i j

i j

i j

i j

t

t

xx

xy

u

u

i j

i j

v

v

v

v

i j

i j

i j

i j

t

t

yy

xy

v

v

i j

i j

d udV

udS p dS

u dS

dt

dS

dS

d vdV

vdS p dS

v dS

dt

dS

dS

x

x

y

y

y

x

v n

e n

n

e n

e n

v n

e n

n

e n

e n

(10)

   

    

 

,

,

,

,

( )

= (

)(

)

(Prod Dis Add) .

xy

xy

xy

xy

i j

i j

i j

i j

d dV

dS

dS

dV

dt

v n

n

(11)

In case of fixed immersed boundaries by analogy with the LS-STAG

discretization of Navier — Stokes equations [2] the general form of the LS-STAG

discretization for (10), (11) can be written as the following:

 

        

       

,

,

,

,

= 0;

(

)

(

)

= 0;

(

)

(

)

= 0;

ib

x

y

x

y

x

x

x

x

ib c

ib

x

x

xx

x xy

x x

x

y

y

y

y

ib c

ib

y

y

yy

y xy

y

y

y

D U D U U

d M U C U G P T D T K U S

S

dt

d M U C U G P T D T K U S

S

dt

(12)

 

 

 

    

 

  

, ,

[ ]

[ ,

]

[ ]

[ ,

,

]

= 0.

n

xy

xy

n ib c n

ib

xy n n

xy

n

ib

xy

n

xy

d M C U S

K G

dt

S G

M PDA

(13)

Here

P

is the discrete pressure,

x

U

and

y

U

are the discrete components of the

velocity vector,

xy

T

is the discrete shear Reynolds or subgrid stresses,

xx

T

and

yy

T

are

the discrete normal Reynolds or subgrid stresses,

is the discrete

,

is the

discrete

;

ib

U

denotes the mass flux arising in case of

;

ib

v 0

,

,

ib c

x

S

,

,

ib

x

S

,

,

ib c

y

S

,

,

ib

y

S

,

,

ib c

xy

S

xy

S

are source terms;

,

x

K

y

K

and

xy

K

represent the discretization of the

diffusive terms;

,

x

D

,

y

D

,

x

D

y

D

are the divergence discrete analogues on the

corresponding meshes;

,

x

C

y

C

and

xy

C

represent the discretization of the convective

terms;

=

x

T

x

G D

and

=

y

T

y

G D

are the gradient discrete analogues;

PDA

is the

discrete analog of

 

(Prod Dis Add);

   

,

=

[ ,

]

xy

ib g

ib

G G S

is the discrete

analogue of

 

/

x

and

 

/

y

which are computed in the middle of

,

i j

fluid

faces.

The time integration of the differential algebraic system (12) is performed with a

semi-implicit projection method based on the Adams — Bashforth/second-order