Electrical Conductivity of Concentrated Solutions of 1-butyl-3-methylpyridinium bis{(trifluoromethyl)sulfonyl}imide in Acetonitrile, Dimethylsulfoxide, and Dimethylformamide

Authors: Artemkina Yu.M., Karpunichkina I.A., Plechkova N.V., Shcherbakov V.V. Published: 12.11.2023
Published in issue: #5(110)/2023  
DOI: 10.18698/1812-3368-2023-5-90-121

Category: Chemistry | Chapter: Physical Chemistry  
Keywords: 1-butyl-3-methylpyridinium bis{(trifluoromethyl)sulfonyl}imide, electrical conductivity, association, acetonitrile, dimethylsulfoxide, dimethylformamide


The results of studying the dependence of the electrical conductivity (EC) of concentrated ionic liquids (ILs) solutions in polar solvents on concentration and temperature published in the literature are analyzed. As the concentration increases, the specific EC of IL solutions in polar solvents passes through a maximum. An increase in the length of the hydrocarbon radical included in the composition of the IL ion leads to a decrease in the value of the maximum specific EC κmax, and the position of the maximum shifts towards lower concentrations. The specific EC of solutions of 1-butyl-3-methylpyridinium bis{(trifluoromethyl)sulfonyl}imide ([Bmpy][NTf2]) in acetonitrile (AN), dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) was measured in the temperature range of 20--65 °C. The values of the maximum EC at a given temperature κmax and the corresponding values of the concentration cmax were determined. The influence of the dielectric characteristics of the solvent on the value of the specific EC of IL solutions was established. The distances between ions in solutions are calculated at concentrations corresponding to the maximum specific EC, as well as the concentrations below which solvate-separated ion pairs are formed in solutions. It is shown that the association explaining the presence of a maximum in the κ--с dependence begins at concentrations when the distance between the ions is less than the diameter of the solvent molecule. In this case, contact ion pairs are formed in the solution. To generalize the temperature and concentration dependences of the specific EC of [Bmpy][NTf2] solutions in AN, DMF, and DMSO, the normalized EC κ / κmax and the normalized concentration c / cmax were used. It is shown that in the entire studied range of temperatures and concentrations, the values of the normalized EC κ / κmax of all studied solutions in a given solvent fit into a single curve in the coordinates κ / κmax--c / cmax. According to the Arrhenius equation, the activation energy of the specific EC Еκ was calculated. It is shown that Еκ increases with increasing IL concentration and decreases with increasing temperature in proportion to the inverse square of the absolute temperature

Please cite this article in English as:

Artemkina Yu.M., Karpunichkina I.A., Plechkova N.V., et al. Electrical conductivity of concentrated solutions of 1-butyl-3-methylpyridinium bis{(trifluoromethyl)sulfo-nyl}imide in acetonitrile, dimethylsulfoxide, and dimethylformamide. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2023, no. 5 (110), pp. 90--121 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2023-5-90-121


[1] Plechkova N.V., Seddon K.R. Applications of ionic liquids in the chemical industry. Chem. Sic. Rev., 2008, vol. 37, iss. 1, pp. 123--150. DOI: https://doi.org/10.1039/B006677J

[2] Torrecilla J.S., ed. The role of ionic liquids in the chemical industry. Nova, 2012.

[3] Siriwardana A.I. Industrial applications of ionic liquids. In: Torriero A. (eds). Electrochemistry in Ionic Liquids. Cham, Springer, 2015, pp. 563--603. DOI: https://doi.org/10.1007/978-3-319-15132-8_20

[4] Ohno H. Electrochemical aspects of ionic liquids. Wiley, 2011.

[5] Liu H., Yu H. Ionic liquids for electrochemical energy storage devices applications. J. Mater. Sci. Technol., 2019, vol. 35, iss. 4, pp. 674--686. DOI: https://doi.org/10.1016/j.jmst.2018.10.007

[6] Aslanov L.A., Zakharov M.A., Abramycheva N.L. Ionnye zhidkosti v ryadu rastvoriteley [Ionic liquids in the solvent series]. Moscow, MSU Publ., 2005.

[7] Vila J., Gines P., Rilo E., et al. Great increase of the electrical conductivity of ionic liquids in aqueous solutions. Fluid Phase Equilib., 2006, vol. 247, iss. 1-2, pp. 32--39. DOI: https://doi.org/10.1016/j.fluid.2006.05.028

[8] Chaban V.V., Voroshylova I.V., Kalugin O.N., et al. Acetonitrile boosts conductivity of imidazolium ionic liquids. J. Phys. Chem. B, 2012, vol. 116, iss. 26, pp. 7719−7727. DOI: https://doi.org/10.1021/jp3034825

[9] Nishida T., Tashiro Y., Yamamoto M. Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. J. Fluor. Chem., 2003, vol. 120, iss. 2, pp. 135--141. DOI: https://doi.org/10.1016/S0022-1139(02)00322-6

[10] Diaw M., Chagnes A., Carre B., et al. Mixed ionic liquid as electrolyte for lithium batteries. J. Power Sources, 2005, vol. 146, iss. 1-2, pp. 682--684. DOI: https://doi.org/10.1016/j.jpowsour.2005.03.068

[11] Francois Y., Zhang K., Varenne A., et al. New integrated measurement protocol using capillary electrophoresis instrumentation for the determination of viscosity, conductivity and absorbance of ionic liquid--molecular solvent mixtures. Anal. Chim. Acta, 2006, vol. 562, iss. 2, pp. 164--170. DOI: https://doi.org/10.1016/j.aca.2006.01.036

[12] Liu W., Zhao T., Zhang Y. The physical properties of aqueous solutions of the ionic liquid [BMIM][BF4]. J. Solution Chem., 2006, vol. 35, no. 10, pp. 1337--1346. DOI: https://doi.org/10.1007/s10953-006-9064-7

[13] Jarosik A., Krajewski S.R., Lewandowski A., et al. Conductivity of ionic liquids in mixtures. J. Mol. Liq., 2006, vol. 123, iss. 1, pp. 43--50. DOI: https://doi.org/10.1016/j.molliq.2005.06.001

[14] Liu W., Cheng L., Zhang Y., et al. The physical properties of aqueous solution of room-temperature ionic liquids based on imidazolium: database and evaluation. J. Mol. Liq., 2008, vol. 140, iss. 1-3, pp. 68--72. DOI: https://doi.org/10.1016/j.molliq.2008.01.008

[15] Herzig T., Schreiner C., Bruglachner H. Temperature and concentration dependence of conductivities of some new semichelatoborates in acetonitrile and comparison with other borates. J. Chem. Eng. Data, 2008, vol. 53, iss. 2, pp. 434--438. DOI: https://doi.org/10.1021/je700525h

[16] Stoppa A., Hunger J., Buchner R. Conductivities of binary mixtures of ionic liquids with polar solvents. J. Chem. Eng. Data, 2009, vol. 54, iss. 2, pp. 472--479. DOI: https://doi.org/10.1021/je800468h

[17] Zhu A., Wang J., Han L., et al. Measurements and correlation of viscosities and conductivities for the mixtures of imidazolium ionic liquids with molecular solutes. Chem. Eng. J., 2009, vol. 147, iss. 1, pp. 27--35. DOI: https://doi.org/10.1016/j.cej.2008.11.013

[18] Zarrougui R., Dhahbi M., Lemordant D. Effect of temperature and composition on the transport and thermodynamic properties of binary mixtures of ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and propylene carbonate. J. Solut. Chem., 2010, vol. 39, vol. 7, pp. 921--942. DOI: https://doi.org/10.1007/s10953-010-9562-5

[19] Li J.-G., Hu Y-F., Jin C-W., et al. Study on the conductivities of pure and aqueous bromide-based ionic liquids at different temperatures. J. Solut. Chem., 2010, vol. 39, no. 12, pp. 1877--1887. DOI: https://doi.org/10.1007/s10953-010-9576-z

[20] Rilo E., Vila J., Garcia M., et al. Viscosity and electrical conductivity of binary mixtures of CnMIM-BF4 with ethanol at 288 K, 298 K, 308 K, and 318 K. J. Chem. Eng. Data, 2010, vol. 55, iss. 11, pp. 5156--5163. DOI: https://doi.org/10.1021/je100687x

[21] Zarrougui R., Dhahbi M., Lemordant D. Volumetric and transport properties of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide--methanol binary mixtures. Ionics, 2011, vol. 17, iss. 4, pp. 343--352. DOI: https://doi.org/10.1007/s11581-010-0511-5

[22] Lopes J.N.C., Gomes M.F.C., Husson P., et al. Polarity, viscosity, and ionic conductivity of liquid mixtures containing [C4C1im][Ntf2] and a molecular component. J. Phys. Chem. B, 2011, vol. 115, iss. 19, pp. 6088--6099. DOI: https://doi.org/10.1021/jp2012254

[23] Zhang Q.-G., Sun S.-S., Pitula S., et al. Electrical conductivity of solutions of ionic liquids with methanol, ethanol, acetonitrile, and propylene carbonate. J. Chem. Eng. Data, 2011, vol. 56, iss. 12, pp. 4659--466. DOI: https://doi.org/10.1021/je200616t

[24] Rilo E., Vila J., Garcia-Garabal S., et al. Electrical conductivity of seven binary systems containing 1-ethyl-3-methyl imidazolium alkyl sulfate ionic liquids with water or ethanol at four temperatures. J. Phys. Chem. B, 2013, vol. 117, iss. 5, pp. 1411−1418. DOI: https://doi.org/10.1021/jp309891j

[25] Kalugin O.N., Voroshylova I.V., Riabchunova A.V., et al. Conductometric study of binary systems based on ionic liquids and acetonitrile in a wide concentration range. Electrochim. Acta, 2013, vol. 105, pp. 188--199. DOI: http://dx.doi.org/10.1016/j.electacta.2013.04.140

[26] Andanson J.-M., Traikia M., Husson P. Ionic association and interactions in aqueous methylsulfate alkyl-imidazolium-based ionic liquids. J. Chem. Thermodyn., 2014, vol. 77, pp. 214--221. DOI: https://doi.org/10.1016/j.jct.2014.01.031

[27] Xu L., Cui X., Zhang Y., et al. Measurement and correlation of electrical conductivity of ionic liquid [EMIM][DCA] in propylene carbonate and γ-butyrolactone. Electrochim. Acta, 2015, vol. 174, pp. 900--907. DOI: https://doi.org/10.1016/j.electacta.2015.06.053

[28] Saba H., Yumei Z., Huaping W. Physical properties and solubility parameters of 1-ethyl-3-methylimidazolium based ionic liquids/DMSO mixtures at 298.15 K. Russ. J. Phys. Chem. A, 2015, vol. 89, no. 13, pp. 2381--2387. DOI: https://doi.org/10.1134/S0036024415130324

[29] Papovic S., Gadzuric S., Bester-Rogac M., et al. Effect of the alkyl chain length on the electrical conductivity of six (imidazolium-based ionic liquids + γ-butyrolactone) binary mixtures. J. Chem. Thermodyn., 2016, vol. 102, pp. 367--377. DOI: http://dx.doi.org/10.1016/j.jct.2016.07.039

[30] Papovic S., Gadzuric S., Bester-Rogac M., et al. A systematic study on physicochemical and transport properties of imidazolium-based ionic liquids with γ-butyrolactone. J. Chem. Thermodyn., 2018, vol. 116, pp. 330--340. DOI: https://doi.org/10.1016/j.jct.2017.10.004

[31] Arkhipova E.A., Ivanov A.S., Maslakov K.I., et al. Effect of cation structure of tetraalkylammonium- and imidazolium-based ionic liquids on their conductivity. Electrochim. Acta, 2019, vol. 297, pp. 842--849. DOI: https://doi.org/10.1016/j.electacta.2018.12.002

[32] Lobo V.M.M., Quaresma J.L. Handbook of electrolyte solutions. Parts A and B. Elsevier, 1989. 2354 p.

[33] Dobosh D. Elektrokhimicheskie konstanty [Electrochemical constants]. Moscow, Mir Publ., 1980.

[34] Barthel J. Electrolytes in non-aqueous solvents. Pure Appl. Chem., 1979, vol. 51, iss. 10, pp. 2093--2124. DOI: https://doi.org/10.1351/pac197951102093

[35] Woodward C.E., Harris K.R. A lattice-hole theory for conductivity in ionic liquid. Phys. Chem. Chem. Phys., 2010, vol. 12, iss. 5, pp. 1172--1176. DOI: https://doi.org/10.1039/B919835K

[36] Casteel J.F., Amis E.S. Specific conductance of concentrated solutions of magnesium salts in water-ethanol system. J. Chem. Eng. Data, 1972, vol. 17, iss. 1, pp. 55--59. DOI: https://doi.org/10.1021/je60052a029

[37] Barthel J., Gores H.-J., Neueder R., et al. Electrolyte solutions for technology --- new aspects and approaches. Pure Appl. Chem., 1999, vol. 71, no. 9, pp. 1705--1715. DOI: https://doi.org/10.1351/pac199971091705

[38] Ding M.S. Casteel --- Amis equation:  its extension from univariate to multivariate and its use as a two-parameter function. J. Chem. Eng. Data, 2004, vol. 49, iss. 5, pp. 1469--1475. DOI: https://doi.org/10.1021/je049839a

[39] Mahiuddin S., Wahab A. Isentropic compressibility, electrical conductivity, shear relaxation time, surface tension and Raman spectra of aqueous zinc nitrate solutions. J. Chem. Eng. Data, 2004, vol. 49, iss. 1, pp. 126--132. DOI: https://doi.org/10.1021/je0302001

[40] Wahab A., Mahiuddin S., Hefter G., et al. Densities, ultrasonic velocities, viscosities, and electrical conductivities of aqueous solutions of Mg(OAc)2 and Mg(NO3)2. J. Chem. Eng. Data, 2006, vol. 51, iss. 5, pp. 1609--1616. DOI: https://doi.org/10.1021/je060107n

[41] Tyunina E.Yu., Chekunova M.D. Electroconductivity of solutions of LiAsF6 in aprotic solvents with different permittivity. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya [CHEMCHEMTECH], 2015, vol. 58, no. 1, pp. 112--115 (in Russ.).

[42] Shcherbakov V.V. Regularity of conductivity of concentrated aqueous solutions of strong electrolytes. Russ. J. Electrochem., 2009, vol. 45, no. 11, pp. 1292--1295. DOI: https://doi.org/10.1134/S102319350911010X

[43] Shcherbakov V.V., Artemkina Yu.M. Electrical conductivity in alkali metal hydroxide-water systems. Russ. J. Inorganic Chem., 2010, vol. 55, no. 6, pp. 967--969. DOI: https://doi.org/10.1134/S0036023610060227

[44] Artemkina Yu.M., Zagoskin Yu.D., Kuznetsov N.M., et al. Regularities in the electrical conductivity of aqueous solutions of some inorganic acids. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya [CHEMCHEMTECH], 2016, no. 2, pp. 26--30 (in Russ.).

[45] Shcherbakov V.V., Artemkina Yu.M., Ponomareva T.N. Electric conductivity of concentrated aqueous solutions of propionic acid, sodium propionate and their mixtures. Russ. J. Electrochem., 2008, vol. 44, no. 10, pp. 1185--1190. DOI: https://doi.org/10.1134/S1023193508100170

[46] Shcherbakov V.V., Artemkina Yu.M., Ponomareva T.N., et al. Electrical conductivity of the ammonia-water system. Russ. J. Inorg. Chem., 2009, vol. 54, no. 2, pp. 277--279. DOI: https://doi.org/10.1134/S0036023609020193

[47] Artemkina Yu.M., Shcherbakov V.V. Electrical conductivity of associated electrolyte-water systems. Russ. J. Inorg. Chem., 2010, vol. 55, no. 9, pp. 1487--1489. DOI: https://doi.org/10.1134/S0036023610090251

[48] Varela L. M., Carrete, J., Garcia M., et al. Pseudolattice theory of charge transport in ionic solutions: сorresponding states law for the electric conductivity. Fluid Phase Equilib., 2010, vol. 298, iss. 2, pp. 280−286. DOI: https://doi.org/10.1016/j.fluid.2010.08.013

[49] Varela L.M., Carrete J., Garcia M., et al. Pseudolattice theory of ionic liquids. In: Ionic Liquids. Theory, Properties, New Approaches. InTech, 2011, pp. 347--366.

[50] Rilo E., Vila J., Garcia-Garabal S., et al. Electrical conductivity of seven binary systems containing 1-ethyl-3-methyl imidazolium alkyl sulfate ionic liquids with water or ethanol at four temperatures. J. Phys. Chem. B, 2013, vol. 117, iss. 5, pp. 1411−1418. DOI: https://doi.org/10.1021/jp309891j

[51] Robinson R.A., Stokes R.H. Electrolyte solutions. Dover Publ., 2012.

[52] Vila J., Gines P., Pico J.M., et al. Temperature dependence of the electrical conductivity in EMIM-based ionic liquids: evidence of Vogel --- Tamman --- Fulcher behavior. Fluid Phase Equilib., 2006, vol. 242, iss. 2, pp. 141--146. DOI: https://doi.org/10.1016/j.fluid.2006.01.022

[53] Vila J., Varela L.M., Cabeza O. Cation and anion sizes influence in the temperature dependence of the electrical conductivity in nine imidazolium based ionic liquids. Electrochim. Acta, 2007, vol. 52, iss. 26, pp. 7413--7417. DOI: https://doi.org/10.1016/j.electacta.2007.06.044

[54] Litovitz T.A. Temperature dependence of the viscosity of associated liquids. J. Chem. Phys., 1952, vol. 20, iss. 7, pp. 1088--1089. DOI: https://doi.org/10.1063/1.1700671

[55] Artemkina Yu.M., Shcherbakov V.V., Akimova I.A. The temperature dependence of the electrical conductivity activation energy of the of aqueous electrolyte solutions. Mater. Sci. Forum, 2021, vol. 1031, pp. 228--233. DOI: https://doi.org/10.4028/www.scientific.net/MSF.1031.228

[56] Borun A., Fernandez C., Bald A. Conductance studies of aqueous ionic liquids solutions [emim][BF4] and [bmim][BF4] at temperatures from (283.15 to 318.15) K. Int. J. Electrochem. Sci., 2015, vol. 10, iss. 3, pp. 2120--2129. DOI: https://doi.org/10.1016/S1452-3981(23)04834-4

[57] Borun A. Conductance and ionic association of selected imidazolium ionic liquids in various solvents: a review. J. Mol. Liq., 2019, vol. 276, pp. 214--224. DOI: https://doi.org/10.1016/j.molliq.2018.11.140

[58] Shcherbakov V.V., Artemkina Yu.M., Akimova I.A., et al. Dielectric characteristics, electrical conductivity and solvation of ions in electrolyte solutions. Materials, 2021, vol. 14, iss. 19, art. 5617. DOI: https://doi.org/10.3390/ma14195617

[59] Barthel J., Feuerlein F., Neueder R., et al. Calibration of conductance cells at various temperatures. J. Solution Chem., 1980, vol. 9, no. 3, pp. 209--219. DOI: https://doi.org/10.1007/BF00648327

[60] Hefter G., Buchner R. Dielectric relaxation spectroscopy: an old-but-new technique for the investigation of electrolyte solutions. Pure Appl. Chem., 2020, vol. 92, iss. 10, pp. 1595--1609. DOI: https://doi.org/10.1515/pac-2019-1011

[61] Shcherbakov V.V., Artemkina Yu.M., Pleshkova N.V., et al. Ultimate high-frequency conductivity of solvent and electroconductivity of electrolyte solutions. Russ. J. Electrochem., 2009, vol. 45, no. 8, pp. 922--924. DOI: https://doi.org/10.1134/s1023193509080138

[62] Shcherbakov V.V., Artemkina Yu.M. Dielectric properties of solvents and their limiting high-frequency conductivity. Russ. J. Phys. Chem., 2013, vol. 87, no. 6, pp. 1048--1051. DOI: https://doi.org/10.1134/S0036024413060241

[63] Kumbharkhane A.C., Puranik S.M., Mehrotra S.C. Dielectric relaxation studies of aqueous N,N-dimethylformamide using a picosecond time domain technique. J. Solut. Chem., 1993, vol. 22, no. 3, pp. 219--229. DOI: https://doi.org/10.1007/BF00649245

[64] Khirade P.W., Chaudhari A., Shinde J.B., et al. Temperature-dependent dielectric relaxation of 2-ethoxyethanol, ethanol, and 1-propanol in dimethylformamide solution using the time-domain technique. J. Solut. Chem., 1999, vol. 28, no. 8, pp. 1031--1043. DOI: https://doi.org/10.1023/A:1022666128166

[65] Yang L.-J., Yang X.-Q., Huang K.-M., et al. Dielectric properties of binary solvent mixtures of dimethyl sulfoxide with water. Int. J. Mol. Sci., 2009, vol. 10, iss. 3, pp. 1261--1270. DOI: https://doi.org/10.3390/ijms10031261

[66] Puranik S.M., Kumbharkhane A.C., Mehrotra S.C. Dielectric study of dimethyl sulfoxide--water mixtures using the time-domain technique. J. Chem. Soc. Faraday Trans., 1992, vol. 88, iss. 3, pp. 433--435. DOI: https://doi.org/10.1039/FT9928800433

[67] Lu Z., Manias E., Macdonald D.D., et al. Dielectric relaxation in dimethyl sulfoxide/water mixtures studied by microwave dielectric relaxation spectroscopy. J. Phys. Chem. A, 2009, vol. 113, iss. 44, pp. 12207--12214. DOI: https://doi.org/10.1021/jp9059246