|

On Solution to Phase Transition Problem in Multicomponent Alloy in the Cylindrical Ampule

Authors: Shcheritsa O.V., Gusev A.O., Mazhorova O.S. Published: 27.09.2017
Published in issue: #5(74)/2017  
DOI: 10.18698/1812-3368-2017-5-118-138

 
Category: Informatics, Computer Engineering and Control | Chapter: Mathematical Modelling. Numerical Methods, and Software Systems  
Keywords: stefan problem, phase transition, mathematical simulation

The paper presents a self-consistent model of multicomponent alloy crystallization in a cylindrical ampule. The mathematical model accounts for the heat and matter transfer in both solid and liquid phases. We described the system by the interface position and radially average temperature and concentrations. Special efforts are required to solve a corresponding one dimensional phase transition problem in multicomponent alloy. To handle evolution of solid/liquid interface, the moving boundary problem is mapped to a new coordinate system. We obtained a conservative and implicit finite difference scheme in a new coordinate system with control volume technique and constructed a fully implicit coupled approach. Furthermore, we solved a corresponding set of nonlinear equations by Newton method for the unknown vector, whose components are concentrations of all species, interface rate and temperature. The proposed method was used for numerical simulation of the crystallization process of А-В-С solution

References

[1] Samarskii A.A., Vabishchevich P.N. Vychislitel'naya teploperedacha [Computational heat transfer]. Moscow, URSS Publ., 2003. 784 p.

[2] Samarskii A.A., Vabishchevich P.N., Iliev O.P., Churbanov A.G. Numerical simulation of convection/diffusion phase change problems — a review. Journal of Heat Mass Transfer, 1993, vol. 36, no. 17, pp. 4095–4106.

[3] Muray W.D., Landis F. Numerical and machine solutions of the transient heat conduction problems involving melting or freezing. Journal of Heat Transfer, 1959, vol. 81, pp. 106–112.

[4] Vermolen F.J., Vuik C. A mathematical model for the dissolution of particles in multicomponent alloys. J. of Computational and Applied Math., 2000, vol. 126, no. 1-2, pp. 233–254. DOI: 10.1016/S0377-0427(99)00355-6 Available at: http://www.sciencedirect.com/science/article/pii/S0377042799003556

[5] Mazhorova O.S., Popov Yu.P., Shcheritsa O.V. An algorithm for solving a phase transition problem in a multicomponent system. Differential Equations, 2004, vol. 40, no. 7, pp. 1051–1059. DOI: 10.1023/B:DIEQ.0000047035.96793.be Available at: https://link.springer.com/article/10.1023/B%3ADIEQ.0000047035.96793.be

[6] Mazhorova O.S., Popov Yu.P., Shcheritsa O.V. Conservative scheme for the thermodiffusion Stefan problem. Differential Equations, 2013, vol. 49, no. 7, pp. 869–882. DOI: 10.1134/S0012266113070094 Available at: https://link.springer.com/article/10.1134/S0012266113070094

[7] Illingworth T.C., Golosnoy I.O. Numerical solutions of diffusion-controled moving boundary problems which conserve solute. Journal of Computation Physics, 2005, vol. 209, no. 1, pp. 207–225. DOI: 10.1016/j.jcp.2005.02.031 Available at: http://www.sciencedirect.com/science/article/pii/S0021999105000859

[8] Bakirova O.I. Chislennoe modelirovanie protsessa zonnoy plavki na osnove resheniya zadachi o fazovom perekhode v binarnoy sisteme. Matematicheskoe modelirovanie. Poluchenie metallov i poluprovodnikovykh struktur [Numerical simulation of zone melting process based on solution of problem of phase transition in binary system. In: Math. modeling. Metals and semiconductor structures production]. Moscow, Nauka Publ., 1986, pp. 142–158 (in Russ.).

[9] Degtyarev L.M., Drozdov V.V., Ivanova T.S. The method of nets adapted to the solution in singularly perturbed one-dimensional boundary value problems. Differentsial

[10] Pandelaers L., Verhaeghe F., Wollants P., Blanpain B. An implicit conservative scheme for coupled heat and mass transfer problems with multiple moving interfaces. Int. J. of Heat and Mass Transfer, 2011, vol. 54, no. 5-6, pp. 1039–1045.

[11] Landau H.G. Heat conduction in a melting solid. J. App. Math., 1950, vol. 8, pp. 81–94.

[12] Chtcheritsa O.V., Mazhorova O.S., Popov Yu.P. Implicit numerical algorithm for the solution of phase transition problems in multi-component alloys. Mathematical Modelling and Analysis, 2004, vol. 9, no. 4, pp. 253–266. Available at: http://www.tandfonline.com/doi/abs/10.1080/13926292.2004.9637258

[13] Mazhorova O.S., Popov Yu.P., Pokhilko V.I. Matrichnyy algoritm chislennogo resheniya nestatsionarnykh zadach kontsentratsionnoy konvektsii dlya mnogokomponentnykh sred. Matematicheskoe modelirovanie. Poluchenie monokristallov i poluprovodnikovykh struktur [Matrix algorithm of numerical solution of non-stationary concentration-induced convection problems in multicomponent medium. Monocrystal and semiconductor structure production]. Moscow, Nauka Publ., 1986, pp. 19–31 (in Russ.).

[14] Ghez R., Small M.B. Growth and dissolution kinetics of ternary alloys of ternary III-V heterostructures formed by liquid phase epitaxy. III. Effect of temperature programming. Journal of Applied Physics, 1982, vol. 53, no. 7, pp. 4907–4918. DOI: 10.1063/1.331324

[15] Shcheritsa O.V., Mazhorova O.S., Popov Yu.P. Numerical study for diffusion processes in dissolution and growth of CdHgTe/CdTe heterostructures formed by LPE. Part I. Isothermal conditions. Journal of Crystal Growth, 2006, vol. 290, no. 2, pp. 357–362.

[16] Mazhorova O.S., Popov Yu.P., Shcheritsa O.V. Implicit numerical algorithm for solution of phase transition problems. Preprint instituta prikladnoy matematiki im. M.V. Keldysha RAN [KIAM Preprint], 2004, no. 29, 42 p. Available at: http://library.keldysh.ru/preprint.asp?id=2004-29

[17] Samarskii A.A. Vvedenie v teoriyu raznostnykh skhem [Introduction to the theory of difference schemes]. Moscow, Nauka Publ., 1971. 552 p.

[18] Samarskiy A.A., Nikolaev E.S. Metody resheniya setochnykh uravneniy [Finite-difference equation solution methods]. Moscow, Nauka Publ., 1978. 592 p.

[19] Denisov I.A., Lakeenkov V.M., Mazhorova O.S., Popov Yu.P. Mathematical simulation of epitaxial growing of solid solutions CdYHg1–YTe liquid phase. Preprint instituta prikladnoy matematiki im. M.V. Keldysha RAN [KIAM Preprint], 1992, no. 65, 42 p. (in Russ.).

[20] Denisov I.A., Lakeenkov V.M., Mazhorova O.S., Popov Yu.P. Numerical modelling for liquid phase epitaxy of CdxHg1–xTe solid solution. Journal of Crystal Growth, 2002, vol. 245, no. 1-2, pp. 21–30.

[21] Denisov I.A., Mazhorova O.S., Popov Yu.P., Smirnova N.A. Numerical modelling for convection in growth/dissolution of solid solution CdxHg1–xTe by liquid phase epitaxy. Journal of Crystal Growth, 2004, vol. 269, no. 2-4, pp. 284–291.

[22] Sanz-Maudes J., Sangador J., Rodriguez T., et al. Numerical simulation of the growth of HgCdTe layers by liquid phase epitaxy from Te-rich solutions: The effect of liquid dimensions and mercury loss. Journal of Crystal Growth, 1990, vol. 106, no. 2-3, pp. 303–317.

[23] Dost S., Qin Z., Kimura M. A model for convective mass transport in liquid phase epitaxial growth of semiconductors. Journal of Heat Mass Transfer, 1997, vol. 40, no. 13, pp. 3039–3047.

[24] Kimura M., Qin Z., Dost S. A solid — liquid diffusion model for growth and dissolution of ternary alloys by liquid phase epitaxy. Journal of Crystal Growth, 1996, vol. 158, pp. 231–240.