Stationary Distribution for a Stochastic System of Complexes Interacting Particles
Authors: Kalinkin A.V. | Published: 14.09.2014 |
Published in issue: #4(55)/2014 | |
DOI: | |
Category: Mathematics and Mechanics | |
Keywords: Markov process, discrete states, stationary distribution, particle interaction |
A stochastic system of particles of n different kinds T1,...,Tn interacting as complexes is considered. A state of the system is a n-dimensional vector а = (α1,..., αn) of Nn vector set with nonnegative integer components. This means that there is a group Sα consisting of α1 particles of the kind T1,..., and αn particles of the kind Tn. Sufficient conditions are given for the closed class of states which are achievable from a given state a. Necessary and sufficient conditions are given for a finite closed class of states. A stationary distribution of the Markov process for the closed class is derived and some particular cases - binomial and Poisson distributions are considered. Relation of the found stationary distribution and the microcanonical and canonical distributions has been established.
References
[1] Gikhman I.I., Skorokhod A.V. Vvedenie v teoriyu sluchaynykh protsessov [Introduction to the theory of stochastic processes]. Moscow, Nauka Publ., 1977. 568 p.
[2] Sevast’yanov B.A. Vetvyashchiesya protsessy [Branching process]. Moscow, Nauka Publ., 1971. 436 p.
[3] Sevast’yanov B.A., Kalinkin A.V. Branching stochastic processes with interaction of particles. Dokl. Akad. Nauk SSSR [Proc. Acad. Sci. uSsR], 1982, vol. 264, no. 2, pp. 306-308 (in Russ.).
[4] Kalinkin A.V. Branching Markov process with interaction. Usp. Mat. Nauk [Math-Uspekhi], 2002, vol. 57, no. 2, pp. 23-84 (in Russ.).
[5] Gardiner C.W. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. 2d ed. Springer-Verlag, 1985. 442 p. (Russ. ed.: Gardiner K.V. Stokhasticheskie metody v estestvennykh naukakh. Moscow, Mir, 1986. 528 p.).
[6] Anderson W.J. Continuous-time markov chains: an application-oriented approach. N.Y., Springer, 1991. 340 p.
[7] Kalinkin A.V. Typical calculation for Markov processes of birth and death of quadratic type. Tr. Vseross. Konf. "Prikladnaya teoriya veroyatnostey i teoreticheskaya informatika" [Proc. All-Russ. Conf. "Applied probability theory and theoretical informatics"], Izd. RUDN Publ., 2012, pp. 41-43 (in Russ.).
[8] Leontovich M.A. Basic equations of the kinetic theory of gases in terms of the theory of stochastic processes. Zhurnal eksperimental’noy i teoreticheskoy fiziki [J. Exp. Theor. Phys.], 1935, vol. 2, no. 3-4, pp. 210-230 (in Russ.).
[9] Maslov V.P., Tariverdiev S.E. Asymptotics of Kolmogorov-Feller equations for a system of a large number of particles. Sb. VINITI (Baza Dannykh RAN) "Itogi nauki i tekhniki". Ser. Teoriya veroyatn. Matem. statist. Teoretich. kibern. [Collect. Pap. of All-Russ. Inst. for Sc. Tech. Inf. VINITI (Database RAS) "Science and technique totals". Ser.: Probability Theory. Math. Stat. Theor. Cybernetics], Moscow, 1982, vol. 19, pp. 85-124 (in Russ.).
[10] Chzhun Kay Lay. Odnorodnye tsepi Markova. [Homogeneous Markov Chains]. Moscow, Nauka Publ., 1964. 426 p.
[11] Kalinkin A.V. Stationary distribution of system of interacting particles with discrete states. Dokl. Akad. Nauk SSSR [Proc. Acad. Sci. USSR], 1983, vol. 268, no. 6, pp. 1362-1364 (in Russ.).
[12] Nicolis G., Prigogine I. Self-organization in nonequilibrium systems John Wiley & Sons, 1977. 491 p. (Russ. Ed.: Nicolis G., Prigogine I. Samoorganizatsiya v neravnovesnykh sistemakh. Moscow, Mir Publ., 1979. 512 p.).
[13] Bocharov P.P., Pechinkin A.V. Teoriya massovogo obsluzhivaniya [Queuing theory]. Moscow, RUDN Publ., 1995. 529 p.
[14] Van Kampen N.G. Stochastic processes in physics and chemistry. Front Cover. North-Holland, 1981. 419 p. (Russ. Ed.: Van Kampen N.G. Stokhasticheskie protsessy v fizike i khimii. Мoscow, Vysshaya Shkola Publ., 1990. 376 p.).
[15] Dadvey I.G., Ninham B.W., Staff PJ. Stochastic models for second-order chemical reaction kinetics. The equilibrium state. J. Chem. Phys., 1966, vol. 45, pp. 2145-2155.
[16] Anderson D.F., Craciun G., Kurtz T.G. Product-form stationary distributions for deficiency zero chemical reaction networks. Bulletin of Mathematical Biology. 2010, vol. 72, no. 8, pp. 1947-1970.
[17] Lange A.M. Stationary distribution in an open stochastic system with pairwise interaction of particles. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2005, no. 1 (16), pp. 3-22 (in Russ.).
[18] Pavlov I.V. Approximately optimum confidential boundaries for indexes of reliability of systems with recovery. Izv. Akad. Nauk, Tech. Cyber. [Bull. Russ. Acad. Sci.: Tech. Cyber.], 1988, vol. 3, pp. 109-116 (in Russ.).