Asymptotic theory of harmonic vibration of multilayer thin elastic plates
Authors: Dimitrienko Yu.I., Gubareva E.A., Yakovlev D.O. | Published: 24.12.2015 |
Published in issue: #6(63)/2015 | |
DOI: 10.18698/1812-3368-2015-6-99-120 | |
Category: Mechanics | Chapter: Mechanics of Deformable Solid Body | |
Keywords: multilayer thin plates, asymptotic plates theory, asymptotic theory for harmonic plate vibrations, asymptotic averaging method, asymptotic expansions, local problems, finite elements method |
The paper considers a harmonic vibrations theory of thin elastic multilayer anisotropic plates proposed by the authors. The theory is based on the asymptotic research into three-dimensional general equations of steady-state vibrations of elastic bodies with a small parameter characterizing the length-to-thickness ratio. No hypothesis about both principles of distributing displacement and a stress over the thickness of a plate is used. An asymptotic solution to the problem of eigen vibrations of a plate is found. Recurrent sequences of local vibration problems are formulated, and their solutions are found in the explicit form. It is shown that the averaged problem of the developed plate vibrations theory proves to be similar to the Kirchhoff-Love plate vibrations theory. This method allows us to calculate all 6 stress tenor components including both transverse normal stresses and stresses of an interlayer shift in case of vibrations of thin elastic plates. The solution to the problem offlexural eigen vibrations of a multilayer plate is illustrated by an example. The authors compare computations performed by the developed method and by the finite-element solution of the three-dimensional problem of eigen vibrations on the basis of ANSYS complex. It is shown that the asymptotic theory allows finding eigen frequencies quite accurately and calculating all 6 stress tensor components in a plate with a pinpoint accuracy.
References
[1] Sheshenin S.V. Asymptotic Analysis for Periodic in Plane Plates. Izv. RAN. MTT [Proc. of the Russ. Acad. Sci. Mech. Rigid Body], 2006, no. 6, pp. 71-79 (in Russ.).
[2] Sheshenin S.V., Khodos O.A. Effective Stiffness of Corrugated Plates. Vychislitel’naya mekhanika sploshnoi sredy [Computational Continuum Mechanics], 2011, vol. 4, no. 2, pp. 128-139 (in Russ.).
[3] Kohn R.V., Vogelyus M. A New Model of Thin Plates with Rapidly Varying Thickness. Int. J. Solids and Struct., 1984, vol. 20, no. 4, pp. 333-350.
[4] Panasenko G.P., Reztsov M.V. Averaging the Three-Dimensional Problem of Elasticity Theory in an Inhomogeneous Plate. Dokl. AN SSSR [Reports of Acad. Sci. USSR], 1987, vol. 294, no. 5, pp. 1061-1065 (in Russ.).
[5] Levinski T., Telega J.J. Plates, laminates and shells. Asymptotic Analysis and Homogenization. Singapore, London, World Sci. Publ., 2000. 739 p.
[6] Kolpakov A.G. Homogenized Models for Thin-Walled Nonhomogeneous Structures with Initial Stresses. Springer-Verlag, Berlin, Heidelberg, 2004. 228 p.
[7] Dimitrienko Yu.I. Asymptotic Theory of Multilayer Thin Plates. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2012, no. 3, pp. 86-100 (in Russ.).
[8] Dimitrienko Yu.I., Yakovlev D.O. Asymptotic Theory of Thermoelasticity of Multilayer Composite Plates. Mekhanika kompozitsionnykh materialov i konstruktsii [Composite Mechanics and Design], 2014, vol. 20, no. 2, pp. 259-282.
[9] Dimitrienko Yu.I., Gubareva E.A., Sborschikov S.V. Asymptotic Theory of Constructive-Orthotropic Plates with Two-Periodic Structures. Matematicheskoe modelirovanie i chislennye metody [Mathematical Modeling and Computational Methods], 2014, no. 1, pp. 36-57 (in Russ.).
[10] Dimitrienko Yu.I., Yakovlev D.O. Comparison Analysis of Asymptotic Theory of Multilayer Composite Plates and Three-Dimentional Theory of Elastisity. Jelektr. nauchno-tekh. izd. "Inzhenernyy zhurnal: nauka i innovacii" [El. Sc.-Tekh. Publ. "Eng. J.: Science and Innovation"], 2013, iss. 12. Available at: http://engjournal.ru/catalog/mathmodel/technic/899.html
[11] Dimitrienko Yu.I., Fedonyuk N.N., Gubareva E.A., Sborschikov S.V., Prozorovskiy A.A., Erasov V.S., Yakovlev N.O. Modeling and Development of Three-Layer Sandwich Composite Materials with Honecomb Core. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2014, no. 5, pp. 66-82 (in Russ.).
[12] Dimitrienko Yu.I., Gubareva E.A., Fedonyuk N.N., Yakovlev D.O. A Method of Calculation of Energy Dissipation in Hybrid Composite Structures. Izv. Vyssh. Uchebn. Zaved., Mashinostr. [Proc. Univ., Mech. Eng.], 2014, no. 11. pp. 23-34 (in Russ.).
[13] Dimitrienko Yu.I., Gubareva E.A., Fedonyuk N.N., Sborschikov S.V. Modeling of Elasic-Dissipative Properties of Laminated Fibrous Composites. Jelektr. nauchno-tekh. izd. "Inzhenernyy zhurnal: nauka i innovacii" [El. Sc.-Techn. Publ. "Eng. J.: Science and Innovation"], 2014, no. 4 (28). Available at: http://engjournal.ru/catalog/mathmodel/material/1234.html
[14] Dimitrienko Yu.I., Gubareva E.A., Sborschikov S.V., Fedonyuk N.N. Simulation of Viscoelastic Properties of Fibrous Laminated Polymer Composite Materials. Jelektr. nauchno-tekh. Izd. "Nauka i obrazovanie" [El. Sc.-Tech. Publ. Science and Education], 2014, no. 11. Available at: http://technomag.edu.ru/doc/734246.html DOI: 10.7463/1114.0734246
[15] Dimitrienko Yu.I., Gubareva E.A., Yakovlev D.O. Asymptotic Theory of Viscoelasic Multilayer Thin Composite Plates. Jelektr. nauchno-tekh. izd. "Nauka i obrazovanie" [El. Sc.-Tech. Publ. Science and Education], 2014, no. 10, pp. 359-382. Available at: http://technomag.edu.ru/doc/730105.html DOI: 10.7463/1014.0730105
[16] Dimitrienko Yu.I., Gubareva E.A., Yurin Yu.V. Asymptotic Theory of Thermocreep for Multilayer Thin Plates. Matematicheskoe modelirovanie i chislennye metody [Mathematical Modeling and Computational Methods], 2014, no. 4, pp. 36-57 (in Russ.).
[17] Dimitrienko Yu.I. Mekhanika sploshnoi sredy. V 4 t. T. 4. Osnovy mekhaniki tverdogo tela [Continuum mechanics. In 4 Vol. Vol. 4. Fundamentals of Solid Mechanics]. Moscow, MGTU im. N.E. Baumana Publ., 2013, 624 p.
[18] Dimitrienko Yu.I. Mekhanika sploshnoi sredy. V 4 t. T. 1 Tenzornyi analiz [Continuum Mechanics. In 4 vol. Vol. 1. Tensor analysis]. Moscow, MGTU im. N.E. Baumana Publ. 367 p.
[19] Dimitrienko Yu.I. Tenzornoye ischislenie [Tensor Calculus]. Moscow, Vish. shk. Publ., 2001. 576 p.
[20] Alfutov N.A., Zinoviev P.A., Popov B.G. Raschet mnogosloynih plastin i obolochek iz kompzitscionnih materialov [Calculation of Multilayer Composite Plates and Shells]. Moscow, Mashinostroenie Publ., 1980. 324 p.