Solitary Longitudinal-Bending Waves in Cylindrical Shell Interacting with a Nonlinear Elastic Medium
Authors: Zemlyanukhin A.I., Bochkarev A.V., Mogilevich L.I. | Published: 26.01.2018 |
Published in issue: #1(76)/2018 | |
DOI: 10.18698/1812-3368-2018-1-47-60 | |
Category: Mechanics | Chapter: Theoretical Mechanics | |
Keywords: cylindrical shells, longitudinal-bending waves, perturbation method, exact solitary-wave solutions |
Nonlinearity and dispersion are the main factors that determine wave processes in thin-walled structures. In contrast to rods and plates, in thin shells the longitudinal and normal components of displacements are connected already in the linear approximation. Therefore, dynamic processes in shells are much more complex and are analyzed after some simplifications. Most often, researchers neglect the inertia of the longitudinal displacements, assuming that the middle surface of the shell is inextensible. In each case, assumptions of this kind must be strictly justified and should match the physics of the phenomenon. This article focuses on the derivation and analysis of nonlinear quashyperbolic equation modeling axisymmetric propagation of longitudinal-bending waves in infinite cylindrical shell interacting with an external nonlinearelastic medium. The shell is studied in the framework of the Timoshenko model that takes into account shear deformation and rotational inertia. Using diagonal Pade approximants for the summation of the perturbation series, the exact solitary-wave solutions of the derived equation in the form of traveling front and traveling pulse are obtained. The study shows that the exact solution in the form of a traveling front exists if the nonlinearity of the elastic medium surrounding the shell is ''soft''. It is established that the derived equation allows an implicit linearization using the Cole --- Hopf transformation. The equation permits a conditional factorization that enables to find solitary-wave solutions using the appropriate Duffing equation. The exact solutions of the derived equation can be used in problems of acoustic diagnostics and nondestructive testing of materials
References
[1] Taj M., Zhang J. Analysis of wave propagation in orthotropic microtubules embedded within elastic medium by Pasternak model. J. Mech. Behav. Biomed. Mater., 2014, vol. 30, pp. 300−305. DOI: 10.1016/j.jmbbm.2013.11.011
[2] Lim C.W., Yang Y. Wave propagation in carbon nanotubes: Nonlocal elasticity induced stiffness and velocity enhancement effects. J. Mech. Mater. Struct., 2010, vol. 5, no. 3, pp. 459–476.
[3] Muc A., Banas A., Chwal M. Free vibrations of carbon nanotubes with defects. Mech. and Mechan. Eng., 2013, vol. 17, no. 2, pp. 157–166.
[4] Wang Q., Varadan V.K. Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes. Smart Mater. and Struct., 2007, vol. 16, pp. 178–190. DOI: 10.1088/0964-1726/16/1/022
[5] Gavrikov M.B., Tayurskiy A.A. Spatial nonlinear Alfven wave absorption by dissipative plasma. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2017, no. 2, pp. 40–59 (in Russ.). DOI: 10.18698/1812-3368-2017-2-40-59
[6] Arshinov G.A., Zemlyanukhin A.I., Mogilevich L.I. Two-dimensional solitary waves in a strained nonlinear viscoelastic medium. Akusticheskiy zhurnal, 2000, vol. 46, no. 1, pp. 116–117 (in Russ.).
[7] Erofeev V.I., Zemlyanukhin A.I., Katson V.M., Sheshenin S.F. Formation of strain solitary waves in the Cosserat continuum with restricted rotation. Vychislitelnaya mekhanika sploshnykh sred [Computational Continuum Mechanics], 2009, vol. 2, no. 4, pp. 67–75 (in Russ.).
[8] Erofeev V.I., Zemlyanukhin A.I., Katson V.M. Nonlinear longitudinal magnetoelastic waves in a rod. Nelineynyy mir [Nonlinear World], 2009, vol. 7, no. 7, pp. 533–540 (in Russ.).
[9] Erofeev V.I., Kazhaev V.V., Semerikova N.P. Volny v sterzhnyakh. Dispersiya. Dissipatsiya. Nelineynost [Waves in a rod. Dispersion. Dissipation. Non-linearity]. Moscow, Fizmatlit Publ., 2002. 208 p.
[10] Grigolyuk E.I., Selezov I.T. Neklassicheskie teorii kolebaniy sterzhney, plastin i obolochek [Non-classical oscillation theory for rods, plates and shells]. Ser. Mekhanika tverdykh deformiruemykh tel. T. 5 [Ser. Deformable solid bodies mechanics. Vol. 5]. Moscow, VINITI Publ., 1973. 272 p.
[11] Andrianov I., Avreytsevich Ya. Asymptotic analysis and synthesis methods in nonlinear dynamics and mechanics of deformable solid bodies. Ser. Matematika i mekhanika [Ser. Mathematics and Mechanics]. Moscow, Izhevsk, IKI Publ., 2013. 276 p.
[12] Erofeev V.I., Lisenkova E.E. General relations for waves in one-dimensional elastic systems. Journal of Applied Mathematics and Mechanics, 2013, vol. 77, iss. 2, pp. 230–234. DOI: 10.1016/j.jappmathmech.2013.07.015
[13] Gavrikov M.B., Savelyev V.V. The interaction of solitary waves in two-fluid magnetohydrodynamics in a longitudinal magnetic field. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2017, no. 1, pp. 59–77 (in Russ.). DOI: 10.18698/1812-3368-2017-1-59-77
[14] Volmir A.S. Nelineynaya dinamika plastinok i obolochek [Nonlinear dynamics of plates and shells]. Moscow, Nauka Publ., 1972. 432 p.
[15] Shen H.S. Thermal postbuckling analysis of imperfect Reissner — Mindlin plates on softening nonlinear elastic foundations. J. Engineer. Math., 1998, vol. 33, iss. 3, pp. 256–270. DOI: 10.1023/A:1004257527313
[16] Jabareen M., Sheinman I. Dynamic buckling of a beam on a nonlinear elastic foundation under step loading. J. Mechanics of Materials and Struct., 2009, vol. 4, no. 7-8, pp. 1365–1373.
[17] Filin A.P. Elementy teorii obolochek [Shells theory elements]. Leningrad, Stroyizdat Publ., 1984. 384 p.
[18] Erofeev V.I., Kazhaev V.V., Lisenkova E.E., Semerikova N.P. Nonsinusoidal bending waves in Timoshenko beam lying on nonlinear elastic foundation. Journal of Machinery Manufacture and Reliability, 2008, vol. 37, no. 3, p. 230. DOI: 10.3103/S1052618808030059
[19] Baker G.A. Jr., Graves-Morris P.R. Padé Approximants. In 2 vols. Addison-Wesley, 1981.
[20] Zemlyanukhin A.I., Bochkarev A.V. The perturbation method and exact solutions of non-linear dynamics equations for media with microstructure. Vychislitelnaya mekhanika sploshnykh sred [Computational Continuum Mechanics], 2016, vol. 9, no. 2, pp. 182–191 (in Russ.).
[21] Zemlyanukhin A.I., Bochkarev A.V. Continued fractions, the perturbation method and exact solutions to nonlinear evolution equations. Izvestiya vuzov. Prikladnaya nelineynaya dinamika [Izvestiya VUZ. Applied Nonlinear Dynamics], 2016, vol. 24, no. 4, pp. 71–85 (in Russ.).
[22] Nayfe A.Kh. Metody vozmushcheniy [Perturbations method]. Moscow, Mir Publ., 1976. 454 p.
[23] Conte R.M., Micheline M. The Painlevé handbook. Netherlands, Springer, 2008. 256 p.
[24] Olver P.J. Applications of Lie groups to differential equations. New York, Springer-Verlag, 1986. 475 p.