Quasi-Harmonic Bending Waves Evolution in a Beam Lying on the Generalized Nonlinear-Elastic Foundation and Possibility of their Transformation into a Sequence of Wave Packets
Authors: Erofeev V.I., Morozov A.N., Tsarev I.S. | Published: 22.05.2023 |
Published in issue: #2(107)/2023 | |
DOI: 10.18698/1812-3368-2023-2-83-97 | |
Category: Physics | Chapter: Acoustics | |
Keywords: модуляционная неустойчивость, изгибная волна, балка, обобщенное упругое основание |
Abstract
The paper considers dynamic behavior of a track structure, which is a beam performing bending vibrations and lying on the elastic foundation. In this case, a generalized base model is selected that contains two independent bed coefficients: stiffness for tensile (compressive) and shear deformations. Such a model takes into account the soil distributive ability, i.e., its property to settle not only under the loaded area and the foundation, but also in its vicinity. In addition,to describe the foundation stiffness nonlinear properties, the model assumed dependence on the transverse midline beam and its gradient displacement. Results analysis of the wave processes in the beam showed that, since bending waves had strong dispersion, solution to the problem in the presence of weak nonlinearity was close to solution of a linear problem, and it could be represented as a set of quasi-harmonics. Using the Lighthill criterion, conditions modulation instability manifestation (self-modulation) of the quasi-harmonic waves, which led to their spatial localization and division into separate wave packets, were studied. Analytical expressions were found that described the wave packets shapes. Dependences connecting the amplitude and the wave packet width with the elastic foundation rigidity were analyzed
The work was supported by the Russian Science Foundation (grant no. 20-19-00613)
Please cite this article in English as:
Erofeev V.I., Morozov A.N., Tsarev I.S. Quasi-harmonic bending waves evolution in a beam lying on the generalized nonlinear-elastic foundation and possibility of their transformation into a sequence of wave packets. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2023, no. 2 (107), pp. 83--97 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2023-2-83-97
References
[1] Vlasov S.N., Talanov V.I. Samofokusirovka voln [Self-focusing waves]. Nizhniy Novgorod, IPF RAS Publ., 1997.
[2] Ostrovskiy L.A., Potapov A.I. Vvedenie v teoriyu modulirovannykh voln [Introduction to theory of modulated waves]. Moscow, FIZMATLIT Publ., 2003.
[3] Zakharov V.E., Ostrovsky L.A. Modulation instability: the beginning. Physica D, 2009, vol. 238, iss. 5, pp. 540--548. DOI: https://doi.org/10.1016/j.physd.2008.12.002
[4] Whitham G.B. Linear and nonlinear waves. Wiley, 1974.
[5] Rabinovich M.I., Trubetskov D.I. Vvedenie v teoriyu kolebaniy i voln [Introduction to the theory of vibrations and waves]. Izhevsk, Regulyarnaya i khaoticheskaya dinamika Publ., 2000.
[6] Erofeev V.I., Lisenkova E.E., Tsarev I.S. Dynamic behavior of a beam lying on a generalized elastic foundation and subject to a moving load. Mech. Solids, 2021, vol. 56, no. 7, pp. 1295--1306. DOI: https://doi.org/10.3103/S0025654421070116
[7] Wieghardt K. Uber den Balken auf nachgiebiger Unterlage. Z. Angew. Math. Mech., 1922, vol. 2, iss. 3, pp. 165--184. DOI: https://doi.org/10.1002/zamm.19220020301
[8] von Karman T. Festigkeitsprobleme im Maschinenbau. In: Encyklopadie der Math. Vol. 4С. Leipzig, 1910, pp. 311--385.
[9] Filonenko-Borodich M.M. The simplest model of elastic foundation, capable of distributing the loads. Trudy Mosk. elektromekh. in-ta inzh. transp., 1945, no. 53, pp. 92--108 (in Russ.).
[10] Hetenyi M. Beams on elastic foundations. University of Michigan Press, 1946.
[11] Pasternak P.L. Osnovy novogo metoda rascheta fundamentov na uprugom osnovanii pri pomoshchi dvukh koeffitsientov posteli [Fundamentals of a new calculation method for basis on an elastic foundation using two coefficients]. Moscow, Gosstroyizdat Publ., 1954.
[12] Vlasov V.Z., Leontyev N.N. Technical theory of calculating basis on an elastic foundation. Trudy MISI, 1956, no. 14, pp. 12--31 (in Russ.).
[13] Vlasov V.Z., Leontyev N.N. Balki, plity, obolochki na uprugom osnovanii [Beams, plates, shells on an elastic base]. Moscow, FIZMATGIZ Publ., 1960.
[14] Reissner E. Selected works in applied mechanics and mathematics. Jones and Bartlett Publ., 1996.
[15] Duplyakin I.A. The motion of a carriage with constant velocity along a beam of infinite length resting on a base with two elastic characteristics. J. Appl. Math. Mech., 1991, vol. 55, iss. 3, pp. 376--384. DOI: https://doi.org/10.1016/0021-8928(91)90042-S
[16] Aleksandrov V.M., Duplyakin I.A. Dynamics of an infinite Timoshenko beam lying on a base with two elastic characteristics under motion of a deformable carriage. Izvestiya RAN. MTT, 1996, no. 1, pp. 180--197 (in Russ.).
[17] Slivker V.I. To the question of the appointment of the characteristics of a two-parameter elastic base. Stroitelnaya mekhanika i raschet sooruzheniy, 1981, no. 1, pp. 36--39 (in Russ.).
[18] Eisenberger M., Clastornik J. Beams on variable two-parameter elastic foundation. J. Eng. Mech., 1987, vol. 113, iss. 10, pp. 351--356 (in Russ.). DOI: https://doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1454)
[19] Kurennov S.S. The two-parameter elastic foundation model used for the computation of the glued connection stressed state. Trudy MAI, 2013, no. 66 (in Russ.). Available at: https://trudymai.ru/published.php?ID=40246
[20] Rao Ch.K., Rao L.B. Torsional post-buckling of a simply supported thin-walled open-section beam resting on a two-parameter foundation. J. Appl. Mech. Tech. Phy., 2018, vol. 59, no. 1, pp. 176--184. DOI: https://doi.org/10.1134/S0021894418010224
[21] Wang T.M., Stephens J.E. Natural frequencies of Timoshenko beams on Pasternak foundations. J. Sound Vib., 1977, vol. 51, iss. 2, pp. 149--155. DOI: https://doi.org/10.1016/S0022-460X(77)80029-1
[22] Wang T.M., Gagnon L.W. Vibrations of continuous Timoshenko beams on Winkler --- Pasternak foundations. J. Sound Vib., 1978, vol. 59, iss. 2, pp. 211--220.DOI: https://doi.org/10.1016/0022-460X(78)90501-1
[23] Kozel A.G. Movements in the circular three-layered plate on the two-parametrical foundation. Mekhanika. Issledovaniya i innovatsii [Mechanics. Investigations and Innovations], 2017, no. 10, pp. 80--86 (in Russ.).
[24] Kozel A.G., Starovoytov E.I. The bending of an elastic circular sandwich plate on the Pasternak foundation. Mekhanika kompozitsionnykh materialov i konstruktsiy [Mechanics of Composite Materials and Structures], 2018, vol. 24, no. 3, pp. 392--406 (in Russ.).
[25] Feng Q., Fu Sh., Wang Ch., et al. Analytical solution for fracture of stope roof based on Pasternak foundation model. Soil. Mech. Found. Eng., 2019, vol. 56, iss. 2, pp. 142--150. DOI: https://doi.org/10.1007/s11204-019-09582-x
[26] Rybak S.A., Tartakovskiy B.D. [Nonlinear effects in the propagation of flexural waves in a plate on an elastic foundation]. Nelineynye volny deformatsii. Trudy simpoziuma. T. 2 [Nonlinear Deformation Waves. Symp. Proc. Vol. 2]. Tallin, Institut kibernetiki AN ESSR Publ., 1977, pp. 141--144 (in Russ.).
[27] Erofeev V.I., Kazhaev V.V., Lisenkova E.E., et al. Nonsinusoidal bending waves in Timoshenko beam lying on nonlinear elastic foundation. J. Mach. Manuf. Reliab., 2008, vol. 37, no. 3, pp. 230--235. DOI: https://doi.org/10.3103/S1052618808030059
[28] Erofeev V.I., Lisenkova E.E., Smirnov P.A. Velocity of energy and wave pulse transfer by flexural waves propagating in a beam lying on a nonlinear elastic base. J. Mach. Manuf. Reliab., 2008, vol. 37, no. 6, pp. 568--571. DOI: https://doi.org/10.3103/S1052618808060071
[29] Erofeev V.I., Leontyeva A.V. Anharmonic waves in a Mindlin --- Herrmann rod immersed in a nonlinearly elastic medium. Mech. Solids, 2020, vol. 55, no. 8, pp. 1284--1297. DOI: https://doi.org/10.3103/S0025654420080087
[30] Erofeev V.I., Leontyeva A.V. Dispersion and spatial localization of bending waves propagating in a Timoshenko beam laying on a nonlinear elastic base. Mech. Solids., 2021, vol. 56, no. 4, pp. 443--454. DOI: https://doi.org/10.3103/S0025654421040051
[31] Reissner E. On postbuckling behavior and imperfection sensitivity of thin elastic plates on a non-linear elastic foundation. Stud. Appl. Math., 1970, vol. 49, iss. 1, pp. 45--57. DOI: https://doi.org/10.1002/sapm197049145