Luminescence Intensity ELF Oscillations from a Polymer Membrane in the Aqueous Salt Solutions

Authors: Bunkin N.F., Bashkin S.V., Bolotskova P.N., Gudkov S.V., Kozlov V.A. Published: 22.05.2023
Published in issue: #2(107)/2023  
DOI: 10.18698/1812-3368-2023-2-50-82

Category: Physics | Chapter: Condensed Matter Physics  
Keywords: photo luminescent spectroscopy, low frequency electromagnetic noise, isotonic solution, cell membrane, bubston clusters


The paper studies luminescence from the Nafion polymer membrane surface at its swelling in the isotonic aqueous solutions and bi-distilled water using the experimental photo luminescent spectroscopy. Liquid samples were preliminarily treated with the electric pulses with duration of 1 µs and amplitude of 0.1 V using antenna in the form of a flat capacitor. Experiments in photo luminescent spectroscopy were carried out 20 min after the electric pulse treatment. Typical luminescence intensity dependence on the membrane swelling time could be represented as the exponentially decreasing function. Characteristic decay time of the corresponding functions and stationary level of the membrane luminescence intensity depend on the electrical pulses repetition rate. The obtained dependencies could well be reproduced. However, dependence of the luminescence intensity at certain pulse repetition rates appears to be a random function, and the reproducibility is missing. It could be assumed that these stochastic effects are associated with exposure to random external force of the electromagnetic nature acting on the polymer membrane during swelling. Low-frequency pulsations of neutron stars or white dwarfs are the source of this random force according to the authors of the work. This effect is associated with depolarization during the low-frequency electromagnetic field scattering caused by the neutron stars pulsation. Depolarization effect arises due to scattering on long-living anisotropic clusters of nano-bubbles, which, in turn, are becoming anisotropic in the external field of a flat capacitor. Depolarized scattered radiation causes stochastic oscillations of the polymer fibers unwound into the bulk liquid. In this case, luminescence should also acquire the stochastic character taking into account the effect of resonant luminescence energy transfer from a donor to the luminescence acceptor

This work was supported by a grant from the Ministry of Science and Higher Education of the Russian Federation (no. 075-15-2022-315) for the organization and development of a world-class Research Center "Photonics"

Please cite this article in English as:

Bunkin N.F., Bashkin S.V., Bolotskova P.N., et al. Luminescence intensity ELF oscillations from a polymer membrane in the aqueous salt solutions. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2023, no. 2 (107), pp. 50--82 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2023-2-50-82


[1] Mauritz K.A., Moore R.B. State of understanding of Nafion. Chem. Rev., 2004, vol. 104, pp. 4535--4585. DOI: https://doi.org/10.1021/cr0207123

[2] Choi J.S., Tsui J.H., Xu F., et al. Fabrication of micro- and nanopatternednafion thin films with tunable mechanical and electrical properties using thermal evaporation-induced capillary force lithography. Adv. Mat. Int., 2021, vol. 8, no. 7, art. 2002005. DOI: https://doi.org/10.1002/admi.202002005

[3] Ye J.Y., Yuan D., Ding M., et al. A cost-effective nafion/lignin composite membrane with low vanadium ion permeation for high performance vanadium redox flow battery. J. Power Sources, 2021, vol. 482, art. 229023. DOI: https://doi.org/10.1016/j.jpowsour.2020.229023

[4] Castelino P., Jayarama A., Bhat S., et al. Role of UV irradiated Nafion in power enhancement of hydrogen fuel cells. Int. J. Hydrogen Energy, 2021, vol. 46, no. 50, pp. 25596--25607. DOI: https://doi.org/10.1016/j.ijhydene.2021.05.058

[5] Shinkawa M., Motai K., Eguchi K., et al. Preparation of perfluorosulfonated ionomer nanofibers by solution blow spinning. Membranes, 2021, vol. 11, no. 6, art. 389. DOI: https://doi.org/10.3390/membranes11060389

[6] Lufrano E., Simari C., Di Vona M.L., et al. How the morphology of nafion-based membranes affects proton transport. Polymers, 2021, vol. 13, no. 3, art. 359. DOI: https://doi.org/10.3390/polym13030359

[7] Chen C.S., Chung W.J., Hsu I.C., et al. Force field measurements within the exclusion zone of water. J. Biol. Phys., 2011, vol. 38, no. 1, pp. 113--120. DOI: https://doi.org/10.1007/s10867-011-9237-5

[8] Huszar I., Martonfalvi Z., Laki A., et al. Exclusion-zone dynamics explored with microfluidics and optical tweezers. Entropy, 2014, vol. 16, no. 8, pp. 4322--4337. DOI: https://doi.org/10.3390/e16084322

[9] Spencer P.D., Riches J.D., Williams E.D. Exclusion zone water is associated with material that exhibits proton diffusion but not birefringent properties. Fluid Phase Equilib., 2018, vol. 466, pp. 103--109. DOI: https://doi.org/10.1016/j.fluid.2018.03.020

[10] Figueroa X.A., Pollack G.H. Exclusion-zone formation from discontinuous nafion surfaces. Int. J. Des. Nat. Ecodyn., 2011, vol. 6, no. 4, pp. 286--296. DOI: https://doi.org/10.2495/dne-v6-n4-286-296

[11] Pollack G.H. The fourth phase of water. Ebner and Sons, 2013.

[12] Elton D.C., Spencer P.D., Riches J.D., et al. Exclusion zone phenomena in water --- critical review of experimental findings and theories. Int. J. Mol. Sci., 2020, vol. 21, no. 14, art. 5041. DOI: https://doi.org/10.3390/ijms21145041

[13] Bunkin N.F., Shkirin A.V., Kozlov V.A., et al. Near-surface structure of Nafion in deuterated water. J. Chem. Phys., 2018, vol. 149, no. 16, art. 164901. DOI: https://doi.org/10.1063/1.5042065

[14] Bunkin N.F., Gorelik V.S., Kozlov V.A., et al. Colloidal crystal formation at the "nafion-water" interface. J. Phys. Chem. B, 2014, vol. 118, no. 12, pp. 3372--3377. DOI: https://doi.org/10.1021/jp4100729

[15] Pieranski P. Colloidal crystals. Contemp. Phys., 1983, vol. 24, no. 1, pp. 25--73. DOI: https://doi.org/10.1080/00107518308227471

[16] Craig H. Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science, 1961, vol. 133, no. 3467, pp. 1833--1834. DOI: https://doi.org/10.1126/science.133.3467.1833

[17] Ninham B.W., Bolotskova P.N., Gudkov S.V., et al. Formation of water-free cavity in the process of Nafion swelling in a cell of limited volume; effect of polymer fibers unwinding. Polymers, 2020, vol. 12, no. 12, art. 2888. DOI: https://doi.org/10.3390/polym12122888

[18] Goodsell D.S. The machinery of life. Copernicus New York, Springer, 2009. DOI: https://doi.org/10.1007/978-0-387-84925-6

[19] Reines B.P., Ninham B.W. Structure and function of the endothelial surface layer: unraveling the nanoarchitecture of biological surfaces. Q. Rev. Biophys., 2019, vol. 52, art. e13. DOI: https://doi.org/10.1017/s0033583519000118

[20] Bunkin N.F., Bolotskova P.N., Bondarchuk E.V., et al. Dynamics of polymer membrane swelling in aqueous suspension of amino-acids with different isotopic composition; photoluminescence spectroscopy experiments. Polymers, 2021, vol. 13, no. 16, art. 263. DOI: https://doi.org/10.3390/polym13162635

[21] Adey W.R. Tissue interactions with nonionizing electromagnetic fields. Physiol. Rev., 1981, vol. 61, no. 2, pp. 435--514. DOI: https://doi.org/10.1152/physrev.1981.61.2.435

[22] Adey W.R., Lawrence A.F., eds. Nonlinear electrodynamics in biological systems. Plenum, 1984. DOI: https://doi.org/10.1007/978-1-4613-2789-9

[23] Chiabrera A., Nicolini C., Schwan H.P., eds. Interactions between electromagnetic fields and cells. Springer, 1985. DOI: https://doi.org/10.1016/c2013-0-02552-2

[24] Polk C., Postow E., eds. CRC handbook of biological effects of electromagnetic fields. CRC, 1986.

[25] Blank M., Findl E., eds. Mechanistic approaches to interactions of electromagnetic fields with living systems. Springer, 1987. DOI: https://doi.org/10.1007/978-1-4899-1968-7

[26] Frohlich H., ed. Biological coherence and response to external stimuli. Berlin, Heidelberg, Springer, 1988. DOI: https://doi.org/10.1007/978-3-642-73309-3

[27] Wilson B.W., Stevens R.G., Anderson L.E., eds. Extremely low frequency electromagnetic fields: the question of cancer. Batelle, 1991.

[28] Saliev T., Begimbetova D., Masoud A.R., et al. Biological effects of non-ionizing electromagnetic fields: two sides of a coin. Prog. Biophys. Mol. Biol., 2019, vol. 141, pp. 25--36. DOI: https://doi.org/10.1016/j.pbiomolbio.2018.07.009

[29] Bunkin N.F., Bolotskova P.N., Bondarchuk E.V., et al. Long-term effect of low-frequency electromagnetic irradiation in water and isotonic aqueous solutions as studied by photoluminescence from polymer membrane. Polymers, 2021, vol. 13, no. 9, art. 1443. DOI: https://doi.org/10.3390/polym13091443

[30] Eizenberg D., Kauzmann W. The structure and properties of water. Clarendon Press, 1969.

[31] De Almeida S.H., Kawano Y. Ultraviolet-visible spectra of Nafion membrane. Eur. Polym. J., 1997, vol. 33, no. 8, pp. 1307--1311. DOI: https://doi.org/10.1016/s0014-3057(96)00217-0

[32] Quickenden T.I., Irvin J.A. The ultraviolet absorption spectrum of liquid water. J. Chem. Phys., 1980, vol. 72, no. 8, pp. 4416--4428. DOI: https://doi.org/10.1063/1.439733

[33] Ashmead J. Morlet wavelets in quantum mechanics. Quanta, 2012, vol. 1, no. 1, pp. 58--70. DOI: https://doi.org/10.12743/quanta.v1i1.5

[34] Vanmarcke E. Random fields. World Scientific, 2010.

[35] Kobzar A.I. Prikladnaya matematicheskaya statistika [Applied mathematical statistics]. Moscow, FIZMATLIT Publ., 2006.

[36] Hurley-Walker N., Zhang X., Bahramian A., et al. A radio transient with unusually slow periodic emission. Nature, 2022, vol. 601, pp. 526--530. DOI: https://doi.org/10.1038/s41586-021-04272-x

[37] Landau L.D., Lifshitz E.M. Course of theoretical physics. Vol. 8. Electrodynamics of continuous media. Pergamon Press, 1960.

[38] Bunkin N.F., Shkirin A.V., Suyazov N.V., et al. Formation and dynamics of ion-stabilized gas nanobubble phase in the bulk of aqueous NaCl solutions. J. Phys. Chem. B., 2016, vol. 120, no. 7, pp. 1291--1303. DOI: https://doi.org/10.1021/acs.jpcb.5b11103

[39] Yurchenko S.O., Shkirin A.V., Ninham B.W., et al. Ion-specific and thermal effects in the stabilization of the gas nanobubble phase in bulk aqueous electrolyte solutions. Langmuir, 2016, vol. 32, no. 43, pp. 11245--11255. DOI: https://doi.org/10.1021/acs.langmuir.6b01644

[40] Kelsall G.H., Tang S.Y., Yurdakul S., et al. Electrophoretic behaviour of bubbles in aqueous electrolytes. J. Chem. Soc. Faraday Trans., 1996, vol. 92, no. 20, pp. 3887--3893. DOI: https://doi.org/10.1039/ft9969203887

[41] Takahashi M. Zeta-potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface. J. Phys. Chem. B, 2005, vol. 109, no. 46, pp. 21858--21864. DOI: https://doi.org/10.1021/jp0445270

[42] Ushikubo F.Y., Enari M., Furukawa T., et al. Zeta-potential of micro- and/or nano-bubbles in water produced by some kinds of gases. IFAC Proc. Vol., 2010, vol. 43, no. 26, pp. 283--288. DOI: https://doi.org/10.3182/20101206-3-jp-3009.00050

[43] Bunkin N.F., Shkirin A.V. Nanobubble clusters of dissolved gas in aqueous solutions of electrolyte. II. Theoretical interpretation. J. Chem. Phys., 2012, vol. 137, no. 5, art. 054707. DOI: https://doi.org/10.1063/1.4739530

[44] Bunkin N.F., Suyazov N.V., Shkirin A.V., et al. Nanoscale structure of dissolved air bubbles in water as studied by measuring the elements of the scattering matrix. J. Chem. Phys., 2009, vol. 130, no. 13, art. 134308. DOI: https://doi.org/10.1063/1.3095476

[45] Bunkin N.F., Shkirin A.V., Kozlov V.A. Cluster structure of dissolved gas nanobubbles in ionic aqueous solutions. J. Chem. Eng. Data., 2012, vol. 57, no. 10, pp. 2823--2831. DOI: https://doi.org/10.1021/je300724c

[46] Bunkin N.F., Shkirin A.V., Ignatiev P.S., et al. Nanobubble clusters of dissolved gas in aqueous solutions of electrolyte. I. Experimental proof. J. Chem. Phys., 2012, vol. 137, no. 5, art. 054706. DOI: https://doi.org/10.1063/1.4739528

[47] Van De Hulst H.C., Twersky V. Light scattering by small particles. Wiley, 1957.

[48] Choi H., Choe S.-W. Acoustic stimulation by shunt-diode pre-linearizer using very high frequency piezoelectric transducer for cancer therapeutics. Sensors, 2019, vol. 19, no. 2, art. 357. DOI: https://doi.org/10.3390/s19020357

[49] Brugger M.S., Baumgartner K., Mauritz S.C.F., et al. Vibration enhanced cell growth induced by surface acoustic waves as in vitro wound-healing model. PNAS, 2020, vol. 117, no. 50, pp. 31603--31613. DOI: https://doi.org/10.1073/pnas.2005203117

[50] Lakowicz J.R. Energy transfer. In: Principles of Fluorescence Spectroscopy. Boston, Springer, 2006, pp. 367--394. DOI: https://doi.org/10.1007/978-1-4757-3061-6_13

[51] Bunkin N.F., Astashev M.E., Bolotskova P.N., et al. Possibility to alter dynamics of luminescence from surface of polymer membrane with ultrasonic waves. Polymers, 2022, vol. 14, no. 13, art. 2542. DOI: https://doi.org/10.3390/polym14132542

[52] Landau L.D., Lifshitz E.M. Course of theoretical physics. Vol. 6. Hydrodynamics. Pergamon Press, 1980. DOI: https://doi.org/10.1016/c2013-0-00704-9